GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1573-0662
    Schlagwort(e): Nitric acid ; ion-molecule reactions ; reaction rate coefficients ; ACIMS ; trace gas detection ; atmospheric ion chemistry ; ion source ; ECD ; CID ; triple quadrupole mass spectrometer ; cluster ions
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie , Geologie und Paläontologie
    Notizen: Abstract Atmospheric nitric acid measurements by ACIMS (Active Chemical Ionization Mass Spectrometry) are based on ion-molecule reactions of CO3 -(H2O) n and NO3 -(H2O) n with HNO3. We have studied these reactions in the laboratory using a flow tube apparatus with mass spectrometric detection of reactant and product ions. Both product ion distributions and rate coefficients were measured. All reactions were investigated in an N2-buffer (1–3 hPa) at room temperature. The reaction rate coefficients of OH-, O2 -, O3 -, CO4 -, CO3 -, CO3 -H2O, NO3 -, and NO3 -H2O were measured relative to the known rate k=3.0×10-9 cm3 s-1 for the reaction of O- with HNO3. The main product ion of the reaction of CO3 -H2O with HNO3 was found to be (CO3HNO3)- supporting a previous suggestion made on the basis of balloon-borne ACIMS measurements. For the reaction of bare CO3 - with HNO3 three product ions were observed, namely NO3 -, (NO3OH)-, and (CO3HNO3)-. The reaction rate coefficients for CO3 -H2O (1.7×10-9 cm3 s-1) and NO3 -H2O (1.6×10-9 cm3 s-1) were found to be close to the collision rate. The measured k values for bare CO3 - (1.3×10-9 cm3 s-1) and NO3 - (0.7×10-9 cm3 s-1) are somewhat smaller. The collisional dissociations of CO3 -(H2O) n , NO3 -(H2O) n (n=1, 2), (CO3HNO3)- and (NO3HNO3)-, occasionally influencing ACIMS measurements, were also studied. Fragment ion distributions were measured using a triple quadrupole mass spectrometer. The results showed that previous stratospheric nitric acid measurements were unimpaired from collisional dissociation processes whereas these processes played a major role during previous tropospheric measurements leading to an underestimation of nitric acid concentrations. Previous ACIMS HNO3 detection was also affected by the conversion of CO3 -(H2O) n to NO3 -(H2O) n due to ion source-produced neutral radicals. A novel ACIMS ion source was developed in order to avoid these problems and to improve the ACIMS method.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...