GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 5-hydroxyindoleacetic acid; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Boreogadus saida; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Concentration; Containers and aquaria (20-1000 L or 〈 1 m**2); Event label; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gadus morhua; Kongsfjord_OA; Laboratory experiment; Nekton; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Polar; Ratio; Registration number of species; RV_Heincke; Salinity; Salinity, standard deviation; Sample ID; Serotonin; Single species; Species; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schmidt, Matthias; Windisch, Heidrun Sigrid; Ludwichowski, Kai-Uwe; Seegert, Sean Lando Levin; Pörtner, Hans-Otto; Storch, Daniela; Bock, Christian (2017): Differences in neurochemical profiles of two gadid species under ocean warming and acidification. Frontiers in Zoology, 14(9), https://doi.org/10.1186/s12983-017-0238-5
    Publication Date: 2024-03-15
    Description: Background: Exposure to future ocean acidification scenarios may alter the behaviour of marine teleosts through interference with neuroreceptor functioning. So far, most studies investigated effects of ocean acidification on the behaviour of fish, either isolated or in combination with environmental temperature. However, only few physiological studies on this issue were conducted despite the putative neurophysiological origin of the CO2-induced behavioural changes. Here, we present the metabolic consequences of long-term exposure to projected ocean acidification (396–548 μatm PCO2 under control and 915–1272 μatm under treatment conditions) and parallel warming in the brain of two related fish species, polar cod (Boreogadus saida, exposed to 0 °C, 3 °C, 6 °C and 8 °C) and Atlantic cod (Gadus morhua, exposed to 3 °C, 8 °C, 12 °C and 16 °C). It has been shown that B. saida is behaviourally vulnerable to future ocean acidification scenarios, while G. morhua demonstrates behavioural resilience. Results: We found that temperature alters brain osmolyte, amino acid, choline and neurotransmitter concentrations in both species indicating thermal responses particularly in osmoregulation and membrane structure. In B. saida, changes in amino acid and osmolyte metabolism at the highest temperature tested were also affected by CO2, possibly emphasizing energetic limitations. We did not observe changes in neurotransmitters, energy metabolites, membrane components or osmolytes that might serve as a compensatory mechanism against CO2 induced behavioural impairments. In contrast to B. saida, such temperature limitation was not detected in G. morhua; however, at 8 °C, CO2 induced an increase in the levels of metabolites of the glutamate/GABA-glutamine cycle potentially indicating greater GABAergic activity in G.morhua. Further, increased availability of energy-rich substrates was detected under these conditions. Conclusions: Our results indicate a change of GABAergic metabolism in the nervous system of Gadus morhua close to the optimum of the temperature range. Since a former study showed that juvenile G. morhua might be slightly more behaviourally resilient to CO2 at this respective temperature, we conclude that the observed change of GABAergic metabolism could be involved in counteracting OA induced behavioural changes. This may serve as a fitness advantage of this respective species compared to B. saida in a future warmer, more acidified polar ocean.
    Keywords: 5-hydroxyindoleacetic acid; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Boreogadus saida; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Concentration; Containers and aquaria (20-1000 L or 〈 1 m**2); Event label; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gadus morhua; Kongsfjord_OA; Laboratory experiment; Nekton; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Polar; Ratio; Registration number of species; RV_Heincke; Salinity; Salinity, standard deviation; Sample ID; Serotonin; Single species; Species; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 7253 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...