GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • sampling technique  (2)
  • photochemistry  (1)
  • 1995-1999  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 22 (1995), S. 243-249 
    ISSN: 1573-0662
    Keywords: acetaldehyde ; background troposphere ; concentration distribution ; aircraft ; sampling technique
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A series of 72 measurements of the acetaldehyde (CH3CHO) mixing ratio were made in the lower troposphere during TROPOZ II. These measurements are the first ever made of the background level of this trace gas in the free troposphere. The data show a vertical decrease of the CH3CHO mixing ratio with increasing altitude and indicate higher CH3CHO concentrations in the Northern Hemisphere — in general agreement with a model-derived average CH3CHO distribution. Deviations of the observed CH3CHO mixing ratios from the modelled mean distribution are correlated with similar deviations in the corresponding HCHO mixing ratios.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 22 (1995), S. 251-269 
    ISSN: 1573-0662
    Keywords: formaldehyde ; background troposphere ; concentration distribution ; aircraft ; sampling technique ; methane oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A series of 149 measurements of the HCHO mixing ratio were made between 0 and 10 km altitude and 70° N to 60° S latitude during TROPOZ II. The data show a vertical decrease of the HCHO mixing ratio with altitude at all latitudes and a broad latitudinal maximum in the HCHO mixing ratio between 30° N and 30° S at all altitudes. The measured mixing ratios of HCHO are considerably higher than those expected from CH4 oxidation alone, but agree broadly with the average latitude by altitude distribution of HCHO derived by a 2D model including emissions of C1–C7 hydrocarbons. A number of the regional scale deviations of the measured HCHO distribution from the average modelled one can be explained in terms of the local wind field.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0662
    Keywords: OH instrument ; laser-induced fluorescence ; OH measurements ; photochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Tropospheric hydroxyl radical (OH) concentrations were measured by laser-induced fluorescence (LIF) during the POPCORN field campaign in August 1994 at a rural site in the North East of Germany. Ambient air spectra were recorded by tuning the laser wavelength over a spectral region covering the Q11(3), Q21(3), and P11(1) rotational transitions of the (0-0) band in the A-X system of OH around 308 nm. The observed spectra clearly identify the OH radical in the atmosphere. Besides the OH absorption lines there was no sign of any other narrow-band spectral structure nearby demonstrating the high specificity of the method. For OH measurements with a typical time resolution of 60–100 seconds per data point the laser wavelength was tuned repetitively over small spectral intervals covering the peak position of the P11(1) OH-line and background positions. A total of 2300 measurements were recorded including diurnal cycles of OH with more than 300 data points. The OH as well as the LIF background signal data will be presented. In a first analysis the background signal will be characterized and the correlation between OH and the ozone photolysis frequency will be derived.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...