ISSN:
1432-1939
Keywords:
Submerged macrophytes
;
Photosynthetic rates
;
Chlorophyll content
;
Relative surface area
;
CO2 limitation
Source:
Springer Online Journal Archives 1860-2000
Topics:
Biology
Notes:
Summary Fourteen temperate, submerged macrophytes were cultivated in the laboratory at high DIC levels (3.3–3.8 mM), 10.4–14.4 mol photons (PAR) m-2 d-1 and 15°C. Photosynthesis at photosaturation ranged between 0.59 and 17.98 mg O2 g-1 DW h-1 at ambient pH (8.3) and were markedly higher between 1.76 and 47.11 mg O2 g-1 DW h-1 at pH 6.5 under elevated CO2 concentrations. Photosynthetic rates were significantly related to both the relative surface area and the chlorophyll content of the leaves. Consequently, the photosynthetic rate was much less variable among the species when expressed per surface area and chlorophyll content instead of dry mass. The chlorophyll content was probably a main predictor of photosynthesis of submerged leaves because of the direct relationship of chlorophyll to the light harvesting capacity and/or a coupling to the capacity for photosynthetic electron transport and carboxylation. A comparison with terrestrial leaves characterized the submerged leaves by their low chlorophyll concentrations and low photosynthetic rates per surface area due to the thin leaves. Photosynthetic rates per chlorophyll content in submerged leaves at CO2 saturation, however, were at the same level as photosynthesis in terrestrial leaves measured at ambient CO2 when appropriate corrections were made for differences in incubation temperature.
Type of Medium:
Electronic Resource
URL:
http://dx.doi.org/10.1007/BF00377085
Permalink