GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (11)
  • Hoboken, NJ : Wiley-American Geophysical Union  (2)
  • Woods Hole Oceanographic Institution  (2)
  • 1
    Book
    Book
    Hoboken, NJ : Wiley-American Geophysical Union
    Keywords: Climatic changes ; Ocean-atmosphere interaction ; El Niño Current ; El-Niño-Phänomen ; Southern oscillation ; Klimaänderung
    Description / Table of Contents: "Comprehensive and up-to-date information on Earth's most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences - Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics - Mathematical description of the underlying physical processes that generate ENSO variations - Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle - Advances in modeling, paleo-reconstructions, and operational climate forecasting - Future projections of ENSO and its impacts - Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions"--
    Type of Medium: Book
    Pages: XVI, 506 Seiten , Illustrationen
    Edition: First edition
    ISBN: 9781119548126
    Series Statement: Geophysical monograph series 253
    DDC: 551.5/24648
    Language: English
    Note: Includes index , Includes bibliographical references and index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Hoboken, NJ : Wiley-American Geophysical Union
    Keywords: Climatic changes ; Ocean-atmosphere interaction ; Climatic changes ; Ocean-atmosphere interaction ; El Niño Current ; Pacific Ocean ; El Niño Current ; El-Niño-Phänomen ; Southern oscillation ; Klimaänderung
    Description / Table of Contents: "Comprehensive and up-to-date information on Earth's most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences - Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics - Mathematical description of the underlying physical processes that generate ENSO variations - Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle - Advances in modeling, paleo-reconstructions, and operational climate forecasting - Future projections of ENSO and its impacts - Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions"--
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource
    Edition: First edition
    ISBN: 9781119548119 , 111954811X , 9781119548164
    Series Statement: Geophysical monograph series
    DDC: 551.5/24648
    Language: English
    Note: Includes index , Includes bibliographical references and index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Climate, 26 (16). pp. 5965-5980.
    Publication Date: 2020-07-24
    Description: El Niño–Southern Oscillation (ENSO) in the Pacific and the analogous Atlantic Niño mode are generated by processes involving coupled ocean–atmosphere interactions known as the Bjerknes feedback. It has been argued that the Atlantic Niño mode is more strongly damped than ENSO, which is presumed to be closer to neutrally stable. In this study the stability of ENSO and the Atlantic Niño mode is compared via an analysis of the Bjerknes stability index. This index is based on recharge oscillator theory and can be interpreted as the growth rate for coupled modes of ocean–atmosphere variability. Using observational data, an ocean reanalysis product, and output from an ocean general circulation model, the individual terms of the Bjerknes index are calculated for the first time for the Atlantic and then compared to results for the Pacific. Positive thermocline feedbacks in response to wind stress forcing favor anomaly growth in both basins, but they are twice as large in the Pacific compared to the Atlantic. Thermocline feedback is related to the fetch of the zonal winds, which is much greater in the equatorial Pacific than in the equatorial Atlantic due to larger basin size. Negative feedbacks are dominated by thermal damping of sea surface temperature anomalies in both basins. Overall, it is found that both ENSO and the Atlantic Niño mode are damped oscillators, but the Atlantic is more strongly damped than the Pacific primarily because of the weaker thermocline feedback.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1741–1755, doi:10.1175/2011JPO4437.1.
    Description: An in-depth data analysis was conducted to understand the occurrence of a strong sea surface temperature (SST) front in the central Bay of Bengal before the formation of Cyclone Nargis in April 2008. Nargis changed its course after encountering the front and tracked along the front until making landfall. One unique feature of this SST front was its coupling with high sea surface height anomalies (SSHAs), which is unusual for a basin where SST is normally uncorrelated with SSHA. The high SSHAs were associated with downwelling Rossby waves, and the interaction between downwelling and surface fresh waters was a key mechanism to account for the observed SST–SSHA coupling. The near-surface salinity field in the bay is characterized by strong stratification and a pronounced horizontal gradient, with low salinity in the northeast. During the passage of downwelling Rossby waves, freshening of the surface layer was observed when surface velocities were southwestward. Horizontal convergence of freshwater associated with downwelling Rossby waves increased the buoyancy of the upper layer and caused the mixed layer to shoal to within a few meters of the surface. Surface heating trapped in the thin mixed layer caused the fresh layer to warm, whereas the increase in buoyancy from low-salinity waters enhanced the high SSHA associated with Rossby waves. Thus, high SST coincided with high SSHA. The dominant role of salinity in controlling high SSHA suggests that caution should be exercised when computing hurricane heat potential in the bay from SSHA. This situation is different from most tropical oceans, where temperature has the dominant effect on SSHA.
    Description: This work was supported by the NOAA/Office of Climate Observation (OCO) program.
    Keywords: Rossby waves ; Sea surface temperature ; Sea/ocean surface
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99, Suppl. S (2018): S21-S26, doi:10.1175/BAMS-D-17-0128.1.
    Description: NOAA Coral Reef Conservation Program; National Science Foundation OCE 1537338, OCE 1605365, OCE 1031971
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 1337-1350, doi:10.1175/2008BAMS2499.1.
    Description: The Vasco—Cirene program ex-plores how strong air—sea inter-actions promoted by the shallow thermocline and high sea surface temperature in the Seychelles—Chagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceano-graphic cruise collected oceanic, atmospheric, and air—sea flux observations in this region in Jan-uary—February 2007. The contem-poraneous Vasco field experiment complemented these measure-ments with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a moor-ing and 12 Argo profilers. Unusual conditions prevailed in the Indian Ocean during Janu-ary and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the Seychelles—Chagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cool-ing over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.
    Description: CNES funded the Vasco part of the experiment; INSU funded the Cirene part. R/V Suroît is an Ifremer ship. The contributions from ODU, WHOI, and FOI (Sweden) are supported by the National Science Foundation under Grant Number 0525657. The participation of the University of Miami group was funded though NASA (NNG04HZ33C). PMEL participation was supported through NOAA’s Office of Climate Observation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: As part of the calibration/validation effort for NASA's Scatterometer (NSCAT) we compare the satellite data to winds measured at the sea surface with an array of buoys moored in the equatorial Pacific Ocean. The NSCAT data record runs from September, 1996 through the end of June, 1997. The raw NSCAT data, radar backscatter, is converted to wind vectors at 10 meters above the surface assuming a neutrally stratified atmosphere, using the NSCAT-1 and NSCAT-2 model functions. The surface winds were measured directly by the TAO (Tropical Atmosphere Ocean) buoy array which spans the width of the equatorial Pacific within about 8° of the equator. The buoy program and data archive are maintained by the Pacific Marine Environmental Laboratory, at the National Oceanic and Atmospheric Administration, in collaboration with institutions in Japan, France and Taiwan. We also use data from two buoys maintained by the Woods Hole Oceanographic Institution located along 125°W. Since the buoy winds are measured at various heights above the surface, they are adjusted for both height and atmospheric surface layer stratification before comparisons are made to the NSCAT data. Co-location requirements include measurements within 100 km and 60 minutes of each other. There was a total of 5580 comparisons for the NSCAT-1 model function and 6364 comparisons for the NSCAT-2 model function. The NSCAT wind speeds, using the NSCAT-1 model function, are lower than the buoy wind speeds by about 0.54 ms-1 and have a 9.8° directional bias. The NSCAT-2 winds speeds were lower than the TAO buoy winds by only 0.08 ms-1, but still have the same 9.8° directional bias. The wind retrieval algorithm selects the vector closest to the buoy approximately 88% of the time. However, in the relatively low wind speed regime of the TAO array, approximately 4% of the wind vectors are more than 120° from the buoy wind.
    Description: Funding was provided by the National Aeronautics and Space Administration under Contract No. 957652.
    Keywords: Scatterometer ; Buoy ; Calibration validation ; Wind waves ; Radar meteorology ; NSCAT
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 2672023 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: During May and June 2000, an intercomparison was made of buoy meteorological systems from the Woods Hole Oceanographic Institution (WHOI), the National Oceanographic and Atmospheric Administration (NOAA), Pacific Marine Environmental Laboratory (PMEL), and the Japanese Marine Science and Technology Center (JAMSTEC). Two WHOI systems mounted on a 3 m discus buoy, two PMEL systems mounted on separate buoy tower tops and one JAMSTEC system mounted on a wooden platform were lined parallel to, and 25 m from Nantucket Sound in Massachusetts. All systems used R. M. Young propeller anemometers, Rotronic relative humidity and air temperature sensors and Eppley short-wave radiation sensors. The PMEL and WHOI systems used R. M.Young self-siphoning rain gauges, while the JAMSTEC system used a Scientific Technology ORG-115 optical rain gauge. The PMEL and WHOI systems included an Eppley PIR long-wave sensor, while the JAMSTEC had no longwave sensor. The WHOI system used an AIR DB-1A barometric pressure sensor. PMEL and JAMSTEC systems used Paroscientific Digiquartz sensors. The Geophysical Instruments and Measurements Group (GIM) from Brookhaven National Laboratory (BNL) installed two Portable Radiation Package (PRP) systems that include Eppley short-wave and long-wave sensors on a platform near the site. It was apparent from the data that for most of the sensors, the correlation between data sets was better than the absolute agreement between them. The conclusions made were that the sensors and associated electronics from the three different laboratories performed comparably.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant Number NA96GPO429.
    Keywords: Meteorological sensor intercomparison ; Meteorological sensor performance ; Moored instrument measurements
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 9976018 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009):459-480, doi:10.1175/2008BAMS2608.1.
    Description: The Indian Ocean is unique among the three tropical ocean basins in that it is blocked at 25°N by the Asian landmass. Seasonal heating and cooling of the land sets the stage for dramatic monsoon wind reversals, strong ocean–atmosphere interactions, and intense seasonal rains over the Indian subcontinent, Southeast Asia, East Africa, and Australia. Recurrence of these monsoon rains is critical to agricultural production that supports a third of the world's population. The Indian Ocean also remotely influences the evolution of El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), North American weather, and hurricane activity. Despite its importance in the regional and global climate system though, the Indian Ocean is the most poorly observed and least well understood of the three tropical oceans. This article describes the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA), a new observational network designed to address outstanding scientific questions related to Indian Ocean variability and the monsoons. RAMA is a multinationally supported element of the Indian Ocean Observing System (IndOOS), a combination of complementary satellite and in situ measurement platforms for climate research and forecasting. The article discusses the scientific rationale, design criteria, and implementation of the array. Initial RAMA data are presented to illustrate how they contribute to improved documentation and understanding of phenomena in the region. Applications of the data for societal benefit are also described.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 89 (2008): 1111–1125, doi:10.1175/2008BAMS2462.1.
    Description: The Pilot Research Moored Array in the tropical Atlantic (PIRATA) was developed as a multinational observation network to improve our knowledge and understanding of ocean–atmosphere variability in the tropical Atlantic. PIRATA was motivated by fundamental scientific issues and by societal needs for improved prediction of climate variability and its impact on the economies of West Africa, northeastern Brazil, the West Indies, and the United States. In this paper the implementation of this network is described, noteworthy accomplishments are highlighted, and the future of PIRATA in the framework of a sustainable tropical Atlantic observing system is discussed. We demonstrate that PIRATA has advanced beyond a “Pilot” program and, as such, we have redefined the PIRATA acronym to be “Prediction and Research Moored Array in the Tropical Atlantic.”
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...