GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-28
    Description: Great subduction earthquakes are thought to rupture portions of the megathrust where interseismic coupling is high and velocity-weakening frictional behavior is dominant, releasing elastic deformation accrued over a seismic cycle. Conversely, post-seismic afterslip is assumed to occur primarily in regions of velocity-strengthening frictional characteristics that may correlate with lower interseismic coupling. However, it remains unclear if fixed frictional properties of the subduction interface, co-seismic or aftershock-induced stress redistribution, or other factors control the spatial distribution of afterslip. Here, we use InSAR and GPS observations to map the distribution of co-seismic slip of the 2015 M w 8.3 Illapel, Chile earthquake and afterslip within the first 38 days following the earthquake. We find that afterslip overlaps the co-seismic slip area and propagates along-strike into regions of both high and moderate interseismic coupling. The significance of these observations, however, is tempered by the limited resolution of geodetic inversions for both slip and coupling. Additional afterslip imaged deeper on the fault surface bounds a discrete region of deep co-seismic slip, and both contribute to net uplift of the Chilean Coastal Cordillera. A simple partitioning of the subduction interface into regions of fixed frictional properties cannot reconcile our geodetic observations. Instead, stress heterogeneities, either pre-existing or induced by the earthquake, likely provide the primary control on the afterslip distribution for this subduction zone earthquake. We also explore the occurrence of co- and post-seismic coastal uplift in this sequence and its implications for recent hypotheses concerning the source of permanent coastal uplift along subduction zones.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...