GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-20
    Description: We present Os and Sr isotope ratios and Os, Sr and major/trace element concentrations for river waters, spring waters and rains on the North Island of New Zealand. The Os and Sr data are used to examine whether the NINZ is a significant contributor of unradiogenic Os and Sr to the oceans. Major element chemistry is used to quantify weathering and CO 2 consumption rates on the island to investigate relationships between these processes and Os and Sr behavior. Chemical erosion rates and CO 2 consumption rates across the island range from 44-555 t km -2 yr -1 and 95-1900 × 10 3 mol CO 2 km -2 yr -1 , respectively. Strontium flux for the island range from 177-16,100 mol km -2 yr -1 and the rivers have an average flux normalized 87 Sr/ 86 Sr ratio of 0.7075. In agreement with the previous studies these findings provide further evidence that weathering of arc terrains contributes a disproportionally large amount of Sr to the oceans and consumes very large amounts of CO 2 annually compared to their areal extent. However, the 87 Sr/ 86 Sr from the NINZ is not particularly unradiogenic and it is likely not contributing significant amounts of unradiogenic Sr to the oceans. Repeated Os analyses and bottle leaching experiments revealed extensive and variable sample contamination by Os leaching from rigorously pre-cleaned LDPE bottles. An upper bound on the flux of Os from NINZ can nevertheless be assessed and indicates that island arcs cannot provide significant amounts of unradiogenic Os to the oceans.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 499-508 
    ISSN: 0006-3592
    Keywords: bacterial transport ; porous media ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A model is presented for the coupled processes of bacterial growth and convective transport of bacteria has been modeled using a fractional flow approach. The various mechanisms of bacteria retention can be incorporated into the model through selection of an appropriate shape of the fractional flow curve. Permeability reduction due to pore plugging by bacteria was simulated using the effective medium theory. In porous media, the rates of transport and growth of bacteria, the generation of metabolic products, and the consumption of nutrients are strongly coupled processes. Consequently, the set of governing conservation equations form a set of coupled, nonlinear partial differential equations that were solved numerically. Reasonably good agreement between the model and experimental data has been obtained indicating that the physical processes incorporated in the model are adequate. The model has been used to predict the in situ transport and growth of bacteria, nutrient consumption, and metabolite production. It can be particularly useful in simulating laboratory experiments and in scaling microbial-enhanced oil recovery or bioremediation processes to the field. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 489-497 
    ISSN: 0006-3592
    Keywords: Bacillus licheniformis ; bacterial transport ; porous media ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The convective transport of concentrated suspension of bacteria in porous media is of interest for several processes such as microbial enhanced oil recovery and in situ bioremediation. The parameters which affect the transport of the bacterium Bacillus licheniformis JF-2, a candidate microorganism for microbial enhanced oil recovery, were investigated experimentally in sandpacks. Bacteria retention and permeability reduction occurred primarily in the first few centimeters upon entering the porous medium. In downstream sections of the sandpack, the permeability reduction was low, even in cases in which high cell concentrations (108 cfu/mL) were detected in the effluent. The effect of (i) addition of a dispersant, (ii) linear velocity of injection, (iii) cell concentration, (iv) salinity (v) temperature, and (vi) the presence of a residual oleic phase were determined experimentally. A lower reduction in permeability and a higher effluent bacterial concentration were obtained in the presence of dispersant, high injection velocities, low salinities, and at a higher temperature. Macroscopic measurements at different linear velocities and in the presence or absence of dispersants suggest that the formation of reversible microaggregates and multiparticle hydrodynamic exclusion may be the primary mechanisms for bacterial retention and permeability reduction. © 1994 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...