GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Wiley  (1)
Publikationsart
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2024-05-17
    Beschreibung: The potential for future earthquakes on faults is often inferred from inversions of geodetically derived surface velocities for locking on faults using kinematic models such as block models. This can be challenging in complex deforming zones with many closely spaced faults or where deformation is not readily described with block motions. Furthermore, surface strain rates are more directly related to coupling on faults than surface velocities. We present a methodology for estimating slip deficit rate directly from strain rate and apply it to New Zealand for the purpose of incorporating geodetic data in the 2022 revision of the New Zealand National Seismic Hazard Model. The strain rate inversions imply slightly higher slip deficit rates than the preferred geologic slip rates on sections of the major strike‐slip systems including the Alpine Fault, the Marlborough Fault System and the northern part of the North Island Fault System. Slip deficit rates are significantly lower than even the lowest geologic estimates on some strike‐slip faults in the southern North Island Fault System near Wellington. Over the entire plate boundary, geodetic slip deficit rates are systematically higher than geologic slip rates for faults slipping less than one mm/yr but lower on average for faults with slip rates between about 5 and 25 mm/yr. We show that 70%–80% of the total strain rate field can be attributed to elastic strain due to fault coupling. The remaining 20%–30% shows systematic spatial patterns of strain rate style that is often consistent with local geologic style of faulting. Plain Language Summary The potential for future earthquakes on faults is often inferred from velocities of the ground surface derived from satellite geodesy, but this approach can be challenging in complex deforming zones with many closely spaced faults. We present a new methodology for estimating the rate at which energy is accumulating on faults using measurements of surface strain rates. The method is applied to New Zealand for the purpose of incorporating geodetic data in the 2022 revision of the New Zealand National Seismic Hazard Model. We show that 70%–80% of the total deformation field can be attributed to energy accumulation on known active faults while the source of the remaining 20%–30% remains unknown. Along some of the major faults in New Zealand we find some important differences in rates of energy accumulation from what is expected from geologic data. Estimated rates are significantly lower than even the lowest geologic estimates on some faults in the fault system near highly‐populated Wellington. Key Points We develop a method to invert geodetically derived strain rates for slip deficit rates on faults We find small but systematic differences between slip deficit rates and geologic slip rates About 70%–80% of the surface strain can be attributed to elastic strain due to coupling on faults
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...