GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research: Oceans, Wiley, 119(10), pp. 6743-6762, ISSN: 2169-9291
    Publication Date: 2014-11-27
    Description: Over the polar oceans, near-surface atmospheric transport of momentum is strongly influenced by sea-ice surface topography. The latter is analyzed on the basis of laser altimeter data obtained during airborne campaigns between 1995 and 2011 over more than 10,000 km of flight distance in different regions of the Arctic Ocean. Spectra of height and spacing between topographic features averaged over 10 km flight sections show that typical values are 0.45 m for the mean height and about 20 m for the mean spacing. Nevertheless, the variability is high and the spatial variability is stronger than the temporal one. The total topography spectrum is divided into a range with small obstacles (between 0.2 m and 0.8 m height) and large obstacles (≥0.8 m). Results show that large pressure ridges represent the dominant topographic feature only along the coast of Greenland. In the Central Arctic, the concentration of large ridges decreased over the years, accompanied by an increase of small obstacles concentration and this might be related to decreasing multiyear ice. The application of a topography-dependent parameterization of neutral atmospheric drag coefficients reflects the large variability in the sea-ice topography and reveals characteristic differences between the regions. Based on the analysis of the two spectral ranges, we find that the consideration of only large pressure ridges is not enough to characterize the roughness degree of an ice field, and the values of drag coefficients are in most regions strongly influenced by small obstacles.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-22
    Description: We assessed the responses of solitary cells of Arctic Phaeocystis pouchetii grown under a matrix of temperature (2°C vs. 6°C), light intensity (55 vs. 160 μmol photons m−2 s−1) and pCO2 (400 vs. 1000 μatm CO2, i.e., 40.5 vs. 101.3 Pa). Next to acclimation parameters (growth rates, particulate and dissolved organic C and N, Chlorophyll a content), we measured physiological processes in vivo (electron transport rates and net photosynthesis) using fast-repetition rate fluorometry and membrane-inlet mass spectrometry. Within the applied driver ranges, elevated temperature had the most pronounced impacts, significantly increasing growth, elemental quotas and photosynthetic performance. Light stimulations manifested more prominently under 6°C, underlining temperature's role as a “master-variable”. pCO2 was the least effective driver, exerting mostly insignificant effects. The obtained data were used for a simplistic upscaling simulation to investigate potential changes in P. pouchetii's bloom dynamics in the Fram Strait with increasing temperatures over the 21st century. Although solitary cells might not be fully representative of colonial cells commonly observed in the field, our results suggest that global warming accelerates bloom dynamics, with earlier onsets of blooms and higher peak biomasses. Such a temperature-induced acceleration in the phenology of Phaeocystis and likely other Arctic phytoplankton might cause temporal mismatches, e.g., with the development of grazers, and therefore substantially affect the biogeochemistry and ecology of the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-08
    Description: Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming-induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full-seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice-covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non-diatoms. Overall, the algal EPA and DHA proportions varied up to four-fold seasonally and 10-fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non-ice-associated food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...