GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (9). pp. 4246-4255.
    Publication Date: 2020-02-06
    Description: While the Earth's surface has considerably warmed over the past two decades, the tropical Pacific has featured a cooling of sea surface temperatures in its eastern and central parts, which went along with an unprecedented strengthening of the equatorial trade winds, the surface component of the Pacific Walker Circulation (PWC). Previous studies show that this decadal trend in the trade winds is generally beyond the range of decadal trends simulated by climate models when forced by historical radiative forcing. There is still a debate on the origin of and the potential role that internal variability may have played in the recent decadal surface wind trend. Using a number of long control (unforced) integrations of global climate models and several observational data sets, we address the question as to whether the recent decadal to multidecadal trends are robustly classified as an unusual event or the persistent response to external forcing. The observed trends in the tropical Pacific surface climate are still within the range of the long-term internal variability spanned by the models but represent an extreme realization of this variability. Thus, the recent observed decadal trends in the tropical Pacific, though highly unusual, could be of natural origin. We note that the long-term trends in the selected PWC indices exhibit a large observational uncertainty, even hindering definitive statements about the sign of the trends.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Long‐term predictability of the North Atlantic sea surface temperature (SST) is commonly attributed to buoyancy‐forced changes of the Atlantic Meridional Overturning Circulation. Here we investigate the role of surface wind stress forcing in decadal hindcasts as another source of extratropical North Atlantic SST predictability. For this purpose, a global climate model is forced by reanalysis (ERA‐interim) wind stress anomalies over the period 1979–2017. The simulated climate states serve as initial conditions for decadal hindcasts. Significant skill in predicting detrended observed annual SST anomalies is observed over the extratropical central North Atlantic with anomaly correlation coefficients exceeding 0.6 at lead times of 4 to 7 yrs. The skill is insensitive to the calendar month of initialization and primarily linked to upper ocean heat content anomalies that lead anomalous SSTs by several years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...