GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). 2830-2846 .
    Publication Date: 2020-02-06
    Description: The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 123 (2). pp. 1471-1484.
    Publication Date: 2021-02-08
    Description: The variability of the Atlantic Meridional Overturning Circulation (AMOC) may play a role in sea surface temperature predictions on seasonal to decadal time scales. Therefore, AMOC seasonal cycles are a potential baseline for interpreting predictions. Here we present estimates for the seasonal cycle of transports of volume, temperature, and freshwater associated with the upper limb of the AMOC in the eastern subpolar North Atlantic on the Extended Ellett Line hydrographic section between Scotland and Iceland. Due to weather, ship‐based observations are primarily in summer. Recent glider observations during other seasons present an opportunity to investigate the seasonal variability in the upper layer of the AMOC. First, we document a new method to quality control and merge ship, float, and glider hydrographic observations. This method accounts for the different spatial sampling rates of the three platforms. The merged observations are used to compute seasonal cycles of volume, temperature, and freshwater transports in the Rockall Trough. These estimates are similar to the seasonal cycles in two eddy‐resolving ocean models. Volume transport appears to be the primary factor modulating other Rockall Trough transports. Finally, we show that the weakest transports occur in summer, consistent with seasonal changes in the regional‐scale wind stress curl. Although the seasonal cycle is weak compared to other variability in this region, the amplitude of the seasonal cycle in the Rockall Trough, roughly 0.5–1 Sv about a mean of 3.4 Sv, may account for up to 7–14% of the heat flux between Scotland and Greenland.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: We analyze the contribution of the Agulhas Current on the central water masses of the Benguela upwelling system (BUS) over the last decades in a high-resolution ocean simulation driven by atmospheric reanalysis. The BUS is an Eastern Boundary Upwelling System where upwelling of cold nutrient-rich water favors biomass growth. The two distinct subregions, North and South Benguela, differ in nutrient and oxygen properties of the upwelling water mass. Our analysis indicates that the contribution of Agulhas water to the upwelling is very strong in both subregions. Although the water masses feeding the upwelling have a common origin, their pathways are distinct in both regions. Whereas for the central waters of South Benguela the path is rather direct from where it is formed, the central waters of North Benguela takes a longer route through the equatorial current system. Not only the travel time from the Agulhas Current to the BUS is longer but also the central water mass is twice as old for the northern part when compared to the southern. Our analysis traces the pathways, history, and origin of the central water masses feeding upwelling in the BUS and emphasizes the direct impact of the Agulhas Current on the upwelling region. The variability of that link between the Indian Ocean and the South Atlantic is likely to change the nutrient and oxygen content, as well as temperature and salinity of the water masses in the upwelling region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-10
    Description: The Indian-Atlantic water exchange south of Africa (Agulhas leakage) is a key component of the global ocean circulation. No quantitative estimation of the paleo-Agulhas leakage exists. We quantify the variability in interocean exchange over the past 640,000 years, using planktic foraminiferal assemblage data from two marine sediment records to define an Agulhas leakage efficiency index. We confirm the validity of our new approach with a numerical ocean model that realistically simulates the modern Agulhas leakage changes. Our results suggest that, during the past several glacial-interglacial cycles, the Agulhas leakage varied by ~10 sverdrup and more during major climatic transitions. This lends strong credence to the hypothesis that modifications in the leakage played a key role in changing the overturning circulation to full strength mode. Our results are instrumental for validating and quantifying the contribution of the Indian-Atlantic water leakage to the global climate changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-18
    Description: All climate models predict a freshening of the North Atlantic at high latitude that may induce an abrupt change of the Atlantic Meridional Overturning Circulation (hereafter AMOC) if it resides in the bistable regime, where both a strong and a weak state coexist. The latter remains uncertain as there is no consensus among observations and ocean reanalyses, where the AMOC is bistable, versus most climate models that reproduce a mono-stable strong AMOC. A series of four hindcast simulations of the global ocean at 1/12° resolution, which is presently unique, are used to diagnose freshwater transport by the AMOC in the South Atlantic, an indicator of AMOC bistability. In all simulations, the AMOC resides in the bistable regime: it exports freshwater southward in the South Atlantic, implying a positive salt advection feedback that would act to amplify a decreasing trend in subarctic deep water formation as projected in climate scenarios.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 40 (6). pp. 1138-1143.
    Publication Date: 2020-02-18
    Description: Recent work suggests that changes of the Southern Hemisphere (SH) winds led to an increase in Agulhas leakage and a corresponding salinification of the Atlantic. Climate model projections for the 21st century predict a progressive southward migration and intensification of the SH westerlies. The potential effects on the ocean circulation of such an anthropogenic trend in wind stress are studied here with a high-resolution ocean model forced by a step-function change in SH wind stress that involves a 7% increase in westerlies strength and a 2° shift in the zero wind stress curl. The model simulation suggests a rapid dynamic adjustment of Agulhas leakage by 4.5 Sv, about a third of its original value, after a few years. The change in leakage is reflected in a concomitant change in the transport of the South Atlantic subtropical gyre, but leads only to a small increase in the Atlantic Meridional Overturning Circulation (AMOC) of O(1 Sv) after three decades. A main effect of the increasing inflow of Indian Ocean waters with potential long-term ramifications for the AMOC is the salinification and densification of upper-thermocline waters in the South Atlantic, which extends into the North Atlantic within the first three decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 40 (9). pp. 1772-1776.
    Publication Date: 2017-05-24
    Description: Deep current meter data and output from two high-resolution global ocean circulation models are used to determine the prevalence and location of strong bottom currents in the greater Agulhas Current system. The two models and current meter data are remarkably consistent, showing that benthic storms, with bottom currents greater than 0.2 m s(-1), occur throughout the Agulhas retroflection region south of Africa more than 20% of the time. Furthermore, beneath the mean Agulhas Current core and the retroflection front, bottom currents exceed 0.2 m s(-1) more than 50% of the time, while away from strong surface currents, bottom currents rarely exceed 0.2 m s(-1). Implications for sediment transport are discussed and the results are compared to atmospheric storms. Benthic storms of this strength (0.2 m s(-1)) are comparable to a 9 m s(-1) (Beaufort 5) windstorm, but scaling shows that benthic storms may be less effective at lifting and transporting sediment than dust storms.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 40 (15). pp. 3997-4000.
    Publication Date: 2017-06-20
    Description: Current research indicates an increase in Agulhas leakage for the past and coming decades. This change potentially alters the strength of the Atlantic meridional overturning circulation, in particular, through advection of positive density anomalies into the North Atlantic. To explore the fate of Agulhas leakage, results from a Lagrangian analysis were evaluated, with virtual floats advected within an eddy-permitting ocean model (ORCA025). A considerable fraction of Agulhas leakage reached the subtropical North Atlantic: of a mean Agulhas leakage transport of 15.3 Sv entering the South Atlantic, 9.7, 7.7, and 6.1 Sv crossed sections at 6 degrees S, 6 degrees N, and 26 degrees N, respectively. The most probable transit time of leakage to reach the respective latitudes is one to two decades. We suggest that changes in Agulhas leakage could manifest in the Gulf Stream regime most probably within two decades. These results were supported by an eddy-resolving implementation of the ocean model (INALT01)
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: The upper ocean circulation of the Pacific and Indian Oceans is connected through both the Indonesian Throughflow north of Australia and the Tasman leakage around its south. The relative importance of these two pathways is examined using virtual Lagrangian particles in a high-resolution nested ocean model. The unprecedented combination of a long integration time within an eddy-permitting ocean model simulation allows the first assessment of the interannual variability of these pathways in a realistic setting. The mean Indonesian Throughflow, as diagnosed by the particles, is 14.3 Sv, considerably higher than the diagnosed average Tasman leakage of 4.2 Sv. The time series of Indonesian Throughflow agrees well with the Eulerian transport through the major Indonesian Passages, validating the Lagrangian approach using transport-tagged particles. While the Indonesian Throughflow is mainly associated with upper ocean pathways, the Tasman leakage is concentrated in the 400–900 m depth range at subtropical latitudes. Over the effective period considered (1968–1994), no apparent relationship is found between the Tasman leakage and Indonesian Throughflow. However, the Indonesian Throughflow transport correlates with ENSO. During strong La Niñas, more water of Southern Hemisphere origin flows through Makassar, Moluccas, Ombai, and Timor Straits, but less through Moluccas Strait. In general, each strait responds differently to ENSO, highlighting the complex nature of the ENSO-ITF interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 . pp. 4517-4523.
    Publication Date: 2019-02-26
    Description: The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to inter-annual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here, the multi-decadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 sec-2 decade-1. In the western Atlantic EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multi-decadal trends are close to zero. The non-uniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...