GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Terra Nova, Wiley, Vol. 28, No. 4 ( 2016-08), p. 257-264
    Abstract: Reloca Slide is the relict of an ~24‐km 3 submarine slope collapse at the base of the convergent continental margin of central Chile. Bathymetric and seismic data show that directly to the north and south of the slide the lower continental slope is steep (~10°), the deformation front is shifted landwards by 10–15 km, and the frontal accretionary prism is uplifted. In contrast, ~80 km to the north the lower continental margin presents a lower slope angle of about 4° and a wide frontal accretionary prism. We propose that high effective basal friction conditions at the base of the accretionary prism favoured basal accretion of sediment and over‐steepening of the continental slope, producing massive submarine mass wasting in the Reloca region. This area also spatially correlates with a zone of low coseismic slip of the 2010 Maule megathrust earthquake, which is consistent with high basal frictional coefficients.
    Type of Medium: Online Resource
    ISSN: 0954-4879 , 1365-3121
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1000080-X
    detail.hit.zdb_id: 2020958-7
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Basin Research, Wiley
    Abstract: The seafloor morphology reflects both past and on‐going sedimentary, oceanographic and tectonic processes. Vertical movement is one of the drivers responsible for reshaping the seafloor through forming steep flanks that decrease slope stability, favour landslides, change current paths, form minibasins and control the sediment deposition, distribution and geometry. Here, we make use of these interactions to derive vertical movements and constrain the active tectonic processes at the western termination of the upper Calabrian accretionary wedge from the integrated analysis of bathymetric, backscatter, surface attributes and high‐resolution reflection seismic data. Within this area, we identify two types of deformational features and mechanisms that affect the depositional, erosional and tectonic processes at different scales. These include the deviation of channels, landslide scars, mass transport deposits (MTDs), separated drifts, sediment waves, lineaments and offset seafloor structures. The first type (long‐wavelength uplift) is an uplifted 22‐km‐wide region, in which seismic onlap relationships and the dip of deep reflectors suggest long‐lasting but slow tectonic uplift affecting sedimentation, and the second type (short‐wavelength uplift) includes three narrow elongated structures and one circular dome encircling the first region of uplift. We interpret that the first type of uplift feature was caused by tectonic deformation, while the second type is interpreted as formed by the fast uplift, tilting and faulting of modern sediments caused by diapirism due to rapid sedimentation in response to the first tectonically driven uplift. The study provides insight into the complex interaction of tectonic and sedimentary processes in the upper Calabrian accretionary wedge.
    Type of Medium: Online Resource
    ISSN: 0950-091X , 1365-2117
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2019914-4
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Basin Research, Wiley, Vol. 30, No. 1 ( 2018-02), p. 5-19
    Abstract: The Chatham Rise is located offshore of New Zealand's South Island. Vast areas of the Chatham Rise are covered in circular to elliptical seafloor depressions that appear to be forming through a bathymetrically controlled mechanism, as seafloor depressions 2–5 km in diameter are found in water depths of 800–1100 m. High‐resolution P‐Cable 3D seismic data were acquired in 2013 across one of these depressions. The seafloor depression is interpreted as a mounded contourite. Our data reveal several smaller buried depressions ( 〈 20–650 m diameter) beneath the mounded contourite that we interpret as paleo‐pockmarks. These pockmarks are underlain by a complex polygonal fault system that deforms the strata and an unusual conical feature results. We interpret the conical feature as a sediment remobilization structure based on the presence of stratified reflections within the feature, RMS amplitude values and lack of velocity anomaly that would indicate a nonsedimentary origin. The sediment remobilization structure, polygonal faults and paleo‐depressions are the indicators of the past subsurface fluid flow. We hypothesize that the pockmarks provided the necessary topographic roughness for the formation of the mounded contourites thus linking fluid expulsion and the deposition of contouritic drifts.
    Type of Medium: Online Resource
    ISSN: 0950-091X , 1365-2117
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2019914-4
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...