GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-16
    Description: A bottom simulating reflector (BSR), which marks the base of the gas hydrate stability zone, has been detected for the first time in seismic data of the Black Sea. The survey area is in the northwestern Black Sea at 44°–45°N and 31.5°–32.5°E. In this paper, seismic wide-angle ocean bottom hydrophone (OBH) and ocean bottom seismometer (OBS) data are investigated with the goal to quantify the gas hydrate and free gas saturation in the sediment. An image of the subsurface is computed from wide-angle data by using Kirchhoff depth migration. The image shows the BSR at 205–270 m depth below the seafloor and six to eight discrete layer boundaries between the seafloor and the BSR. The top of the hydrate layer and the bottom of the gas layer cannot be identified by seismic reflection signals. An analysis of traveltimes and reflection amplitudes leads to 1-D P-wave velocity–depth and density–depth models. An average S-wave velocity of 160 m s−1 between the seafloor and the BSR is determined from the traveltime of the P to S converted wave. The normal incidence PP reflection coefficient at the BSR is −0.11, where the P-wave velocity decreases from 1840 to 1475 m s−1. Velocities and density are used to compute the porosity and the system bulk modulus as a function of depth. The Gassmann equation for porous media is used to derive explicit formulae for the gas hydrate and free gas saturation, which depend on porosity and on the bulk moduli of the dry and saturated sediment. A gas hydrate saturation–depth profile is obtained, which shows that there is 38 ± 10 per cent hydrate in the pore space at the BSR depth, where the porosity is 57 per cent (OBS 24). This value is derived for the case that the gas hydrate does not cement the sediment grains, a model that is supported by the low S-wave velocities. There is 0.9 or 0.1 per cent free gas in the sediment below the BSR, depending on the model for the gas distribution in the sediment. The free gas layer may be more than 100 m thick as a result of a zone of enhanced reflectivity, which can be identified in the subsurface image.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  Geophysical Journal International, 161 (3). pp. 763-788.
    Publication Date: 2018-07-16
    Description: The Galápagos volcanic province (GVP) includes several aseismic ridges resulting from the interaction between the Galápagos hotspot (GHS) and the Cocos–Nazca spreading centre (CNSC). The most prominent are the Cocos, Carnegie and Malpelo ridges. In this work, we investigate the seismic structure of the Carnegie ridge along two profiles acquired during the South American Lithospheric Transects Across Volcanic Ridges (SALIERI) 2001 experiment. Maximum crustal thickness is ∼19 km in the central Carnegie profile, located at ∼85°W over a 19–20 Myr old oceanic crust, and only ∼13 km in the eastern Carnegie profile, located at ∼82°W over a 11–12 Myr old oceanic crust. The crustal velocity models are subsequently compared with those obtained in a previous work along three other profiles over the Cocos and Malpelo ridges, two of which are located at the conjugate positions of the Carnegie ones. Oceanic layer 2 thickness is quite uniform along the five profiles regardless of the total crustal thickness variations, hence crustal thickening is mainly accommodated by layer 3. Lower crustal velocities are systematically lower where the crust is thicker, thus contrary to what would be expected from melting of a hotter than normal mantle. The velocity-derived crustal density models account for the gravity and depth anomalies considering uniform and normal mantle densities (3300 kg m−3), which confirms that velocity models are consistent with gravity and topography data, and indicates that the ridges are isostatically compensated at the base of the crust. Finally, a two-dimensional (2-D) steady-state mantle melting model is developed and used to illustrate that the crust of the ridges does not seem to be the product of anomalous mantle temperatures, even if hydrous melting coupled with vigorous subsolidus upwelling is considered in the model. In contrast, we show that upwelling of a normal temperature but fertile mantle source that may result from recycling of oceanic crust prior to melting, accounts more easily for the estimated seismic structure as well as for isotopic, trace element and major element patterns of the GVP basalts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...