GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Company of Biologists ; 2009
    In:  Journal of Experimental Biology Vol. 212, No. 19 ( 2009-10-01), p. 3100-3107
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 212, No. 19 ( 2009-10-01), p. 3100-3107
    Abstract: Porpoise echolocation has been studied previously, mainly in target detection experiments using stationed animals and steel sphere targets, but little is known about the acoustic behaviour of free-swimming porpoises echolocating for prey. Here, we used small onboard sound and orientation recording tags to study the echolocation behaviour of free-swimming trained porpoises as they caught dead, freely drifting fish. We analysed porpoise echolocation behaviour leading up to and following prey capture events,including variability in echolocation in response to vision restriction, prey species, and individual porpoise tested. The porpoises produced echolocation clicks as they searched for the fish, followed by fast-repetition-rate clicks(echolocation buzzes) when acquiring prey. During buzzes, which usually began when porpoises were about 1–2 body lengths from prey, tag-recorded click levels decreased by about 10 dB, click rates increased to over 300 clicks per second, and variability in body orientation (roll) increased. Buzzes generally continued beyond the first contact with the fish, and often extended until or after the end of prey handling. This unexplained continuation of buzzes after prey capture raises questions about the function of buzzes, suggesting that in addition to providing detailed information on target location during the capture, they may serve additional purposes such as the relocation of potentially escaping prey. We conclude that porpoises display the same overall acoustic prey capture behaviour seen in larger toothed whales in the wild,albeit at a faster pace, clicking slowly during search and approach phases and buzzing during prey capture.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2009
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Experimental Biology, The Company of Biologists, ( 2015-01-01)
    Abstract: Echolocating animals exercise an extensive control over the spectral and temporal properties of their biosonar signals to facilitate perception of their actively generated auditory scene when homing in on prey. The intensity and directionality of the biosonar beam defines the field of view of echolocating animals by affecting the acoustic detection range and angular coverage. However, the spatial relationship between an echolocating predator and its prey changes rapidly, resulting in different biosonar requirements throughout prey pursuit and capture. Here we measured single click beam patterns using a parametric fit procedure to test whether free-ranging Atlantic spotted dolphins (Stenella frontalis) modify their biosonar beamwidth. We recorded echolocation clicks using a linear array of receivers and estimated the beamwidth of individual clicks using a parametric spectral fit, cross-validated with well-established composite beam pattern estimates. The dolphins apparently increased the biosonar beamwidth, to a large degree without changing the signal frequency, when they approached the recording array. This is comparable to bats that also expand their field of view during prey capture, but achieve this by decreasing biosonar frequency. This behaviour may serve to decrease the risk that rapid escape movements of prey take them outside the biosonar beam of the predator. It is likely that shared sensory requirements have resulted in bats and toothed whales expanding their acoustic field of view at close range to increase the likelihood of successfully acquiring prey using echolocation, representing a case of convergent evolution of echolocation behaviour between these two taxa.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2015
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Company of Biologists ; 2007
    In:  Journal of Experimental Biology Vol. 210, No. 1 ( 2007-01-01), p. 56-64
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 210, No. 1 ( 2007-01-01), p. 56-64
    Abstract: Field recordings of harbour porpoises (Phocoena phocoena) were made in the inner Danish waters with a vertical array of three or four hydrophones. The back-calculated source level ranged from 178 to 205 dB re 1μPa pp @ 1 m with a mean source level of 191 dB re 1 μPa pp @ 1 m. The maximum source level was more than 30 dB above what has been measured from captive animals, while the spectral and temporal properties were comparable. Calculations based on the sonar equation indicate that harbour porpoises,using these high click intensities, should be capable of detecting fish and nets and should be detectable by porpoise detectors over significantly larger distances than had previously been assumed. Harbour porpoises in this study preferred a relatively constant inter-click interval of about 60 ms, but intervals up to 200 ms and down to 30 ms were also recorded.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2007
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biology Open, The Company of Biologists
    Abstract: Many aquatic birds use sounds extensively for in-air communication. Regardless of this, we know very little about their hearing abilities. The in-air audiogram of a male adult great cormorant (Phalacrocorax carbo) was determined using psychophysical methods (method of constants). Hearing thresholds were derived using pure tones of five different frequencies. The lowest threshold was at 2 kHz: 18 dB re 20 µPa rms. Thresholds derived using signal detection theory were within 2 dB of the ones derived using classical psychophysics. The great cormorant is more sensitive to in-air sounds than previously believed and its hearing abilities are comparable to several other species of birds of similar size. This knowledge is important for our understanding of the hearing abilities of other species of sea birds. It can also be used to develop cormorant deterrent devices for fisheries, as well as to assess the impact of increasing in-air anthropogenic noise levels on cormorants and other aquatic birds.
    Type of Medium: Online Resource
    ISSN: 2046-6390
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2017
    detail.hit.zdb_id: 2632264-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    The Company of Biologists ; 2018
    In:  Journal of Experimental Biology Vol. 221, No. 23 ( 2018-12-01)
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 221, No. 23 ( 2018-12-01)
    Abstract: Reliable estimates of field metabolic rates (FMRs) in wild animals are essential for quantifying their ecological roles, as well as for evaluating fitness consequences of anthropogenic disturbances. Yet, standard methods for measuring FMR are difficult to use on free-ranging cetaceans whose FMR may deviate substantially from scaling predictions using terrestrial mammals. Harbour porpoises (Phocoena phocoena) are among the smallest marine mammals, and yet they live in cold, high-latitude waters where their high surface-to-volume ratio suggests high FMRs to stay warm. However, published FMR estimates of harbour porpoises are contradictory, with some studies claiming high FMRs and others concluding that the energetic requirements of porpoises resemble those of similar-sized terrestrial mammals. Here, we address this controversy using data from a combination of captive and wild porpoises to estimate the FMR of wild porpoises. We show that FMRs of harbour porpoises are up to two times greater than for similar-sized terrestrial mammals, supporting the hypothesis that small, carnivorous marine mammals in cold water have elevated FMRs. Despite the potential cost of thermoregulation in colder water, harbour porpoise FMRs are stable over seasonally changing water temperatures. Varying heat loss seems to be managed via cyclical fluctuations in energy intake, which serve to build up a blubber layer that largely offsets the extra costs of thermoregulation during winter. Such high FMRs are consistent with the recently reported high feeding rates of wild porpoises and highlight concerns about the potential impact of human activities on individual fitness and population dynamics.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2018
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    The Company of Biologists ; 2023
    In:  Journal of Experimental Biology Vol. 226, No. 9 ( 2023-05-01)
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 226, No. 9 ( 2023-05-01)
    Abstract: Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
    Type of Medium: Online Resource
    ISSN: 0022-0949 , 1477-9145
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2023
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    The Company of Biologists ; 2011
    In:  Journal of Experimental Biology Vol. 214, No. 1 ( 2011-01-01), p. 22-29
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 214, No. 1 ( 2011-01-01), p. 22-29
    Abstract: Toothed whales emit high-powered ultrasonic clicks to echolocate a wide range of prey. It may be hypothesized that some of their prey species have evolved capabilities to detect and respond to such ultrasonic pulses in a way that reduces predation, akin to the situation for many nocturnal insects and echolocating bats. Using high-speed film recordings and controlled exposures, we obtained behavioural evidence that simulated toothed whale biosonar clicks elicit highly directional anti-predator responses in an ultrasound-sensitive allis shad (Alosa alosa). Ten shad were exposed to 192 dB re. 1 μPa (pp) clicks centred at 40 kHz at repetition rates of 1, 20, 50 and 250 clicks s–1 with summed energy flux density levels of 148, 161, 165 and 172 dB re. 1 μPa2 s. The exposures mimicked the acoustic exposure from a delphinid toothed whale in different phases of prey search and capture. The response times of allis shad were faster for higher repetition rates of clicks with the same sound pressure level. None of the fish responded to a single click, but had median response times of 182, 93 and 57 ms when exposed to click rates of 20, 50 and 250 clicks s–1, respectively. This suggests that the ultrasound detector of allis shad is an energy detector and that shad respond faster when exposed to a nearby fast-clicking toothed whale than to a slow-clicking toothed whale far away. The findings are thus consistent with the hypothesis that shad ultrasound detection is used for reducing predation from echolocating toothed whales.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2011
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The Company of Biologists ; 2019
    In:  Journal of Experimental Biology Vol. 222, No. 4 ( 2019-02-15)
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 222, No. 4 ( 2019-02-15)
    Abstract: Hearing is a primary sensory modality for birds. For seabirds, auditory data is challenging to obtain and hearing data are limited. Here, we present methods to measure seabird hearing in the field, using two Alcid species: the common murre Uria aalge and the Atlantic puffin Fratercula arctica. Tests were conducted in a portable semi-anechoic crate using physiological auditory evoked potential (AEP) methods. The crate and AEP system were easily transportable to northern Iceland field sites, where wild birds were caught, sedated, studied and released. The resulting data demonstrate the feasibility of a field-based application of an established neurophysiology method, acquiring high quality avian hearing data in a relatively quiet setting. Similar field methods could be applied to other seabirds, and other bird species, resulting in reliable hearing data from a large number of individuals with a modest field effort. The results will provide insights into the sound sensitivity of species facing acoustic habitat degradation.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2019
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    The Company of Biologists ; 2020
    In:  Journal of Experimental Biology
    In: Journal of Experimental Biology, The Company of Biologists
    Abstract: Diving birds spend up to several minutes underwater during pursuit-dive foraging. To find and capture prey, like fish and squid, they probably need several senses in addition to vision. Cormorants, very efficient predators of fishes, have unexpectedly low visual acuity underwater. So, underwater hearing may be an important sense, as for other diving animals. We measured auditory thresholds and eardrum vibrations in air and underwater of the great cormorant (Phalacrocorax carbo sinensis). Wild-caught cormorant fledglings were anesthetized, and their auditory brainstem response (ABR) and eardrum vibrations to clicks and tone bursts were measured, first in an anechoic box in air and then in a large water-filled tank, with their head and ears submerged 10 cm below the surface. Both the ABR-response waveshape and latency, as well as the ABR-thresholds, measured in units of sound pressure, were similar in air and water. The best average sound pressure sensitivity was found at 1 kHz, both in air (53 dB re. 20 µPa) and underwater (58 dB re. 20 µPa). When thresholds were compared in units of intensity, however, the sensitivity underwater was higher than in air. Eardrum vibration amplitudes in both media reflected the ABR-threshold curves. These results suggest that cormorants have in-air hearing abilities comparable to similar-sized diving birds, and that their underwater hearing sensitivity is at least as good as their aerial sensitivity. This together with the morphology of the outer ear (collapsible meatus) and middle ear (thickened eardrum), suggest that cormorants may have anatomical and physiological adaptations for amphibious hearing.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2020
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    The Company of Biologists ; 2012
    In:  Journal of Experimental Biology Vol. 215, No. 24 ( 2012-12-15), p. 4358-4373
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 215, No. 24 ( 2012-12-15), p. 4358-4373
    Abstract: Visually dominant animals use gaze adjustments to organize perceptual inputs for cognitive processing. Thereby they manage the massive sensory load from complex and noisy scenes. Echolocation, as an active sensory system, may provide more opportunities to control such information flow by adjusting the properties of the sound source. However, most studies of toothed whale echolocation have involved stationed animals in static auditory scenes for which dynamic information control is unnecessary. To mimic conditions in the wild, we designed an experiment with captive, free-swimming harbor porpoises tasked with discriminating between two hydrophone-equipped targets and closing in on the selected target; this allowed us to gain insight into how porpoises adjust their acoustic gaze in a multi-target dynamic scene. By means of synchronized cameras, an acoustic tag and on-target hydrophone recordings we demonstrate that porpoises employ both beam direction control and range-dependent changes in output levels and pulse intervals to accommodate their changing spatial relationship with objects of immediate interest. We further show that, when switching attention to another target, porpoises can set their depth of gaze accurately for the new target location. In combination, these observations imply that porpoises exert precise vocal-motor control that is tied to spatial perception akin to visual accommodation. Finally, we demonstrate that at short target ranges porpoises narrow their depth of gaze dramatically by adjusting their output so as to focus on a single target. This suggests that echolocating porpoises switch from a deliberative mode of sensorimotor operation to a reactive mode when they are close to a target.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2012
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...