GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-09
    Description: We previously showed that microRNA 181 (miR-181) can inhibit PRRSV replication by directly targeting its genomic RNA. Here, we report that miR-181 can downregulate the PRRSV receptor CD163 in blood monocytes and porcine alveolar macrophages (PAMs) through targeting the 3' untranslated region (UTR) of CD163 mRNA. Downregulation of CD163 leads to the inhibition of PRRSV entry into PAMs and subsequently suppresses PRRSV infection. Our findings indicate that delivery of miR-181 can be used as antiviral therapy against PRRSV infection.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-22
    Description: Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans -2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmB Ea -RsmA Ea system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora . In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-14
    Description: Discovery of new drugs for the treatment of AIDS typically possessing unique structures associated with novel mechanisms of action has been of great importance due to the quick drug-resistant mutations of HIV-1 strains. The work presented in this report describes a novel class of DNA duplex-based HIV-1 fusion inhibitors. Hydrophobic groups were introduced into a DNA duplex skeleton either at one end, at both ends, or in the middle. These modified DNA duplexes inhibited fusion between HIV-1 and human cell membranes at micro- or submicromolar concentrations. Respective inhibitors adopted an aptamer pattern instead of a base-pairing interaction pattern. Structure-activity relationship studies of the respective DNA duplexes showed that the rigid and negatively charged DNA skeletons, in addition to the presence of hydrophobic groups, were crucial to the anti-HIV-1 activity of these compounds. A fluorescent resonance energy transfer (FRET)-based inhibitory assay showed that these duplex inhibitors interacted with the primary pocket in the gp41 N-terminal heptad repeat (NHR) instead of interacting with the lipid bilayers.
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-21
    Description: The interleukin-6 (IL-6) receptor, which exists as membrane-bound and soluble forms, plays critical roles in the immune response. The soluble IL-6 receptor (sIL6R) has been identified as a potential therapeutic target for preventing coronary heart disease. However, little is known about the role of this receptor during viral infection. In this study, we show that sIL6R, but not IL-6, is induced by viral infection via the cyclooxygenase-2 pathway. Interestingly, sIL6R, but not IL-6, exhibited extensive antiviral activity against DNA and RNA viruses, including hepatitis B virus, influenza virus, human enterovirus 71, and vesicular stomatitis virus. No synergistic effects on antiviral action were observed by combining sIL6R and IL-6. Furthermore, sIL6R mediated antiviral action via the p28 pathway and induced alpha interferon (IFN-α) by promoting the nuclear translocation of IFN regulatory factor 3 (IRF3) and NF-B, which led to the activation of downstream IFN effectors, including 2',5'-oligoadenylate synthetase (OAS), double-stranded RNA-dependent protein kinase (PKR), and myxovirus resistance protein (Mx). Thus, our results demonstrate that sIL6R, but not IL-6, plays an important role in the host antiviral response.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-04
    Description: Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum , Acidithiobacillus caldus , Sulfobacillus acidophilus , and Ferroplasma thermophilum , before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage.
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-08
    Description: Septins are conserved filament-forming GTP-binding proteins that act as cellular scaffolds or diffusion barriers in a number of cellular processes. However, the role of septins in vertebrate development remains relatively obscure. Here, we show that zebrafish septin 6 ( sept6 ) is first expressed in the notochord and then in nearly all of the ciliary organs, including Kupffer's vesicle (KV), the pronephros, eye, olfactory bulb, and neural tube. Knockdown of sept6 in zebrafish embryos results in reduced numbers and length of cilia in KV. Consequently, cilium-related functions, such as the left-right patterning of internal organs and nodal/spaw signaling, are compromised. Knockdown of sept6 also results in aberrant cilium formation in the pronephros and neural tube, leading to cilium-related defects in pronephros development and Sonic hedgehog (Shh) signaling. We further demonstrate that SEPT6 associates with acetylated α-tubulin in vivo and localizes along the axoneme in the cilia of zebrafish pronephric duct cells as well as cultured ZF4 cells. Our study reveals a novel role of sept6 in ciliogenesis during early embryonic development in zebrafish.
    Print ISSN: 0270-7306
    Electronic ISSN: 1098-5549
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-26
    Description: Two cellulolytic thermophilic bacterial strains, CS-3-2 and CS-4-4, were isolated from decayed cornstalk by the addition of growth-supporting factors to the medium. According to 16S rRNA gene-sequencing results, these strains belonged to the genus Clostridium and showed 98.87% and 98.86% identity with Clostridium stercorarium subsp. leptospartum ATCC 35414 T and Clostridium cellulosi AS 1.1777 T , respectively. The endoglucanase and exoglucanase activities of strain CS-4-4 were approximately 3 to 5 times those of strain CS-3-2, whereas the β-glucosidase activity of strain CS-3-2 was 18 times higher than that of strain CS-4-4. The xylanase activity of strain CS-3-2 was 9 times that of strain CS-4-4, whereas the β-xylosidase activity of strain CS-4-4 was 27 times that of strain CS-3-2. The enzyme activities in spent cultures following cocultivation of the two strains with cornstalk as the substrate were much greater than those in pure cultures or an artificial mixture of samples, indicating synergism of glycoside hydrolase secretomes between the two strains. Quantitative measurement of the two strains in the cocultivation system indicated that strain CS-3-2 grew robustly during the initial stages, whereas strain CS-4-4 dominated the system in the late-exponential phase. Liquid chromatography-tandem mass spectrometry analysis of protein bands appearing in the native zymograms showed that ORF3880 and ORF3883 from strain CS-4-4 played key roles in the lignocellulose degradation process. Both these open reading frames (ORFs) exhibited endoglucanase and xylanase activities, but ORF3880 showed tighter adhesion to insoluble substrates at 4, 25, and 60°C owing to its five carbohydrate-binding modules (CBMs).
    Print ISSN: 0099-2240
    Electronic ISSN: 1098-5336
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-18
    Description: Sofosbuvir (SOF) is a highly efficacious and well-tolerated uridine nucleotide analog that inhibits the hepatitis C virus (HCV) NS5B polymerase enzyme. SOF is administered as a prodrug, which undergoes intracellular phosphorylation by host enzymes to a monophosphate, diphosphate, and finally a pharmacologically active triphosphate. In order to fully understand the clinical pharmacology of SOF, there is a great need to determine the intracellular phosphate concentrations of the drug. We describe the validation and utilization of a method to characterize SOF's disposition into various in vivo cell types, including hepatocytes, peripheral blood mononuclear cells (PBMC), and red blood cells (RBC). Standard bioanalytical validation criteria were applied to lysed cellular matrices, with a validated linear range of 50 to 50,000 fmol/sample for each phosphate moiety. The assay was utilized to collect the first data demonstrating concentrations of phosphorylated anabolites formed in PBMC, hepatocytes, and RBC in vivo during SOF therapy. Median concentrations in PBMC were 220 (range, 51.5 to 846), 70.2 (range, 25.8 to 275), and 859 (range, 54.5 to 6,756) fmol/10 6 cells in the monophosphate, diphosphate, and triphosphate fractions, respectively. In contrast, RBC triphosphate concentrations were much lower than those of PBMC, as the median concentration was 2.91 (range, 1.14 to 10.4) fmol/10 6 cells. The PBMC triphosphate half-life was estimated at 26 h using noncompartmental approaches, while nonlinear mixed-effect modeling was used to estimate a 69 h half-life for this moiety in RBC. The validated method and the data it generates provide novel insight into the cellular disposition of SOF and its phosphorylated anabolites in vivo .
    Print ISSN: 0066-4804
    Electronic ISSN: 1098-6596
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2016-02-27
    Description: The HIV-1 envelope trimer (Env) is the target of broadly neutralizing antibodies and is being explored as a vaccine candidate to elicit protective antibodies. One of the most promising antigenic and structural mimics of HIV-1 Env is the SOSIP.664-stabilized soluble trimer from the clade A strain BG505, which is preferentially recognized by broadly neutralizing antibodies. Trimer immunization elicits high-titer neutralization of the autologous tier 2 BG505 strain; however, breadth is limited, and substantial interest has focused on understanding and improving trimer immunogenicity. We sought to improve the antigenic specificity of BG505 SOSIP.664 by reducing recognition of the variable loop 3 (V3) region, which elicits only weakly neutralizing antibodies. To stabilize the trimer in its prefusion closed conformation, we complexed trimeric BG505 SOSIP.664 with the antigen-binding fragment (Fab) of PGT145, a broadly neutralizing quaternary-structure-specific antibody. Compared to the ligand-free trimer, the PGT145 Fab-BG505 SOSIP.664 complex displayed increased melting temperature stability and reduced V3 recognition. In guinea pigs, immunization with the PGT145 Fab-BG505 SOSIP.664 complex elicited ~100-fold lower V3-directed binding and neutralization titers than those obtained with ligand-free BG505 SOSIP.664. Both complexed and ligand-free BG505 SOSIP.664 elicited comparable neutralization of the autologous BG505 virus, and in both cases, BG505 neutralization mapped to the outer domain of gp120 for some guinea pigs. Our results indicate that it is possible to reduce immune recognition of the V3 region of the trimer while maintaining the antigenic profile needed to induce autologous neutralizing antibodies. These data suggest that appropriate modifications of trimer immunogens could further focus the immune response on key neutralization epitopes. IMPORTANCE HIV-1 Env trimers have been proposed as preferred HIV-1 vaccine immunogens. One version, BG505 SOSIP.664, a soluble stabilized trimer, was recently shown to elicit high-titer autologous neutralizing antibodies (NAbs) in rabbits. Here we compared two immunogens: the ligand-free BG505 SOSIP.664 trimer and the same trimer bound to the antigen-binding fragment (Fab) of the PGT145 antibody, a broadly neutralizing antibody which recognizes the trimer at its membrane-distal apex. We hypothesized that the Fab-bound complex would stabilize BG505 SOSIP.664 in its prefusion closed conformation and limit reactivity to weakly neutralizing antibodies targeting the variable loop 3 (V3) region. In guinea pigs, the Fab-complexed trimer induced 100-fold lower responses to the V3 region, while both ligand-free and Fab-complexed trimers elicited similar levels of autologous NAbs. Our findings demonstrate the potential to reduce "off-target" immunogenicity while maintaining the capacity to generate autologous NAbs.
    Print ISSN: 0022-538X
    Electronic ISSN: 1098-5514
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...