GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-16
    Description: Respiratory distress syndrome (RDS) and bronchopulmonary dysplasia remain the leading causes of preterm infant morbidity, mortality, and lifelong disability. Research to improve outcomes requires translational large animal models for RDS. Preterm pigs delivered by caesarian section at gestation days (GD) 98 , 100 , 102 , and 104 were provided 24 h of neonatal intensive care, monitoring (pulse oximetry, blood gases, serum biomarkers, radiography), and nutritional support, with or without intubation and mechanical ventilation (MV; pressure control ventilation with volume guarantee). Spontaneous development of RDS and mortality without MV are inversely related with GD at delivery and correspond with inadequacy of tidal volume and gas exchange. GD 98 and 100 pigs have consolidated lungs, immature alveolar architecture, and minimal surfactant protein-B expression, and MV is essential at GD 98. Although GD 102 pigs had some alveoli lined by pneumocytes and surfactant was released in response to MV, blood gases and radiography revealed limited recruitment 1–2 h after delivery, and mortality at 24 h was 66% (35/53) with supplemental oxygen provided by a mask and 69% (9/13) with bubble continuous positive airway pressure (8–9 cmH 2 O). The lungs at GD 104 had higher densities of thin-walled alveoli that secreted surfactant, and MV was not essential. Between GD 98 and 102, preterm pigs have ventilation inadequacies and risks of RDS that mimic those of preterm infants born during the saccular phase of lung development, are compatible with standards of neonatal intensive care, and are alternative to fetal nonhuman primates and lambs.
    Print ISSN: 1040-0605
    Electronic ISSN: 1522-1504
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-16
    Description: The role of NADPH oxidase (Nox) in both the promotion and impairment of compensatory collateral growth remains controversial because the specific Nox and reactive oxygen species involved are unclear. The aim of this study was to identify the primary Nox and reactive oxygen species associated with early stage compensatory collateral growth in young, healthy animals. Ligation of the feed arteries that form primary collateral pathways in rat mesentery and mouse hindlimb was used to assess the role of Nox during collateral growth. Changes in mesenteric collateral artery Nox mRNA expression determined by real-time PCR at 1, 3, and 7 days relative to same-animal control arteries suggested a role for Nox subunits Nox2 and p47 phox . Administration of apocynin or Nox2ds-tat suppressed collateral growth in both rat and mouse models, suggesting the Nox2/p47 phox interaction was involved. Functional significance of p47 phox expression was assessed by evaluation of collateral growth in rats administered p47 phox small interfering RNA and in p47 phox–/– mice. Diameter measurements of collateral mesenteric and gracilis arteries at 7 and 14 days, respectively, indicated no significant collateral growth compared with control rats or C57BL/6 mice. Chronic polyethylene glycol-conjugated catalase administration significantly suppressed collateral development in rats and mice, implying a requirement for H 2 O 2 . Taken together, these results suggest that Nox2, modulated at least in part by p47 phox , mediates early stage compensatory collateral development via a process dependent upon peroxide generation. These results have important implications for the use of antioxidants and the development of therapies for peripheral arterial disease.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-16
    Description: The enteric nervous system (ENS) is composed of neural crest-derived neurons (also known as ganglion cells) the cell bodies of which are located in the submucosal and myenteric plexuses of the intestinal wall. Intramucosal ganglion cells are known to exist but are rare and often considered ectopic. Also derived from the neural crest are enteric glial cells that populate the ganglia and the associated nerves, as well as the lamina propria of the intestinal mucosa. In Hirschsprung disease (HSCR), ganglion cells are absent from the distal gut because of a failure of neural crest-derived progenitor cells to complete their rostrocaudal migration during embryogenesis. The fate of intramucosal glial cells in human HSCR is essentially unknown. We demonstrate a network of intramucosal cells that exhibit dendritic morphology typical of neurons and glial cells. These dendritic cells are present throughout the human gut and express Tuj1, S100, glial fibrillary acidic protein, CD56, synaptophysin, and calretinin, consistent with mixed or overlapping neuroglial differentiation. The cells are present in aganglionic colon from patients with HSCR, but with an altered immunophenotype. Coexpression of Tuj1 and HNK1 in this cell population supports a neural crest origin. These findings extend and challenge the current understanding of ENS microanatomy and suggest the existence of an intramucosal population of neural crest-derived cells, present in HSCR, with overlapping immunophenotype of neurons and glia. Intramucosal neuroglial cells have not been previously recognized, and their presence in HSCR poses new questions about ENS development and the pathobiology of HSCR that merit further investigation.
    Print ISSN: 0193-1857
    Electronic ISSN: 1522-1547
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-02
    Description: Damage to the enteric nervous system (ENS) associated with intestinal inflammation may underlie persistent alterations to gut functions, suggesting that enteric neurons are viable targets for novel therapies. Mesenchymal stem cells (MSCs) offer therapeutic benefits for attenuation of neurodegenerative diseases by homing to areas of inflammation and exhibiting neuroprotective, anti-inflammatory, and immunomodulatory properties. In culture, MSCs release soluble bioactive factors promoting neuronal survival and suppressing inflammation suggesting that MSC-conditioned medium (CM) provides essential factors to repair damaged tissues. We investigated whether MSC and CM treatments administered by enema attenuate 2,4,6-trinitrobenzene-sulfonic acid (TNBS)-induced enteric neuropathy and motility dysfunction in the guinea pig colon. Guinea pigs were randomly assigned to experimental groups and received a single application of TNBS (30 mg/kg) followed by 1 x 10 6 human bone marrow-derived MSCs, 300 μl CM, or 300 μl unconditioned medium 3 h later. After 7 days, the effect of these treatments on enteric neurons was assessed by histological, immunohistochemical, and motility analyses. MSC and CM treatments prevented inflammation-associated weight loss and gross morphological damage in the colon; decreased the quantity of immune infiltrate in the colonic wall ( P 〈 0.01) and at the level of the myenteric ganglia ( P 〈 0.001); prevented loss of myenteric neurons ( P 〈 0.05) and damage to nerve processes, changes in ChAT, and nNOS immunoreactivity ( P 〈 0.05); and alleviated inflammation-induced colonic dysmotility (contraction speed; P 〈 0.001, contractions/min; P 〈 0.05). These results provide strong evidence that both MSC and CM treatments can effectively prevent damage to the ENS and alleviate gut dysfunction caused by TNBS-induced colitis.
    Print ISSN: 0193-1857
    Electronic ISSN: 1522-1547
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-03
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-03
    Description: The present study was undertaken to establish the role of NADPH oxidase (Nox) in impaired vascular compensation to arterial occlusion that occurs in the presence of risk factors associated with oxidative stress. Diet-induced obese (DIO) mice characterized by multiple comorbidities including diabetes and hyperlipidemia were used as a preclinical model. Arterial occlusion was induced by distal femoral artery ligation in lean and DIO mice. Proximal collateral arteries were identified as the site of major (~70%) vascular resistance to calf perfusion by distal arterial pressures, which decreased from ~80 to ~30 mmHg with ligation in both lean and DIO mice. Two weeks after ligation, significant vascular compensation occurred in lean but not DIO mice as evidenced by increased perfusion (147 ± 48% vs. 49 ± 29%) and collateral diameter (151 ± 30% vs. 44 ± 17%). Vascular mRNA expression of p22 phox , Nox2, Nox4, and p47 phox were all increased in DIO mice. Treatment of DIO mice with either apocynin or Nox2ds-tat or with whole body ablation of either Nox2 or p47 phox ameliorated the impairment in both collateral growth and hindlimb perfusion. Multiparametric flow cytometry analysis demonstrated elevated levels of circulating monocytes in DIO mice without impaired mobilization and demargination after femoral artery ligation. These results establish collateral resistance as the major limitation to calf perfusion in this preclinical model, demonstrate than monocyte mobilization and demarginatin is not suppressed, implicate Nox2-p47 phox interactions in the impairment of vascular compensation to arterial occlusion in DIO mice, and suggest that selective Nox component suppression/inhibition may be effective as either primary or adjuvant therapy for claudicants.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-09
    Description: A definitive understanding of the role of dietary lipids in determining cardioprotection (or cardiodetriment) has been elusive. Randomized trial findings have been variable and sex specificity of dietary interventions has not been determined. In this investigation the sex-selective cardiac functional effects of three diets enriched by omega-3 or omega-6 polyunsaturated fatty acids (PUFA) or enriched to an equivalent extent in saturated fatty acid components were examined in rats after an 8-wk treatment period. In females the myocardial membrane omega-6:omega-3 PUFA ratio was twofold higher than males in the omega-6 diet replacement group. In diets specified to be high in omega-3 PUFA or in saturated fat, this sex difference was not apparent. Isolated cardiomyocyte and heart Langendorff perfusion experiments were performed, and molecular measures of cell viability were assessed. Under basal conditions the contractile performance of omega-6 fed female cardiomyocytes and hearts was reduced compared with males. Omega-6 fed females exhibited impaired systolic resilience after ischemic insult. This response was associated with increased postischemia necrotic cell damage evaluated by coronary lactate dehydrogenase during reperfusion in omega-6 fed females. Cardiac and myocyte functional parameters were not different between omega-3 and saturated fat dietary groups and within these groups there were no discernible sex differences. Our data provide evidence at both the cardiac and cardiomyocyte levels that dietary saturated fatty acid intake replacement with an omega-6 (but not omega-3) enriched diet has selective adverse cardiac effect in females. This finding has potential relevance in relation to women, cardiac risk, and dietary management.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-02
    Description: Intrauterine growth restriction (IUGR) and preterm birth are frequent comorbidities and, combined, increase the risk of adverse respiratory outcomes compared with that in appropriately grown (AG) infants. Potential underlying reasons for this increased respiratory morbidity in IUGR infants compared with AG infants include altered fetal lung development, fetal lung inflammation, increased respiratory requirements, and/or increased ventilation-induced lung injury. IUGR was surgically induced in preterm fetal sheep (0.7 gestation) by ligation of a single umbilical artery. Four weeks later, preterm lambs were euthanized at delivery or delivered and ventilated for 2 h before euthanasia. Ventilator requirements, lung inflammation, early markers of lung injury, and morphological changes in lung parenchymal and vascular structure and surfactant composition were analyzed. IUGR preterm lambs weighed 30% less than AG preterm lambs, with increased brain-to-body weight ratio, indicating brain sparing. IUGR did not induce lung inflammation or injury or alter lung parenchymal and vascular structure compared with AG fetuses. IUGR and AG lambs had similar oxygenation and respiratory requirements after birth and had significant, but similar, increases in proinflammatory cytokine expression, lung injury markers, gene expression, and surfactant phosphatidylcholine species compared with unventilated controls. IUGR does not induce pulmonary structural changes in our model. Furthermore, IUGR and AG preterm lambs have similar ventilator requirements in the immediate postnatal period. This study suggests that increased morbidity and mortality in IUGR infants is not due to altered lung tissue or vascular structure, or to an altered response to early ventilation.
    Print ISSN: 1040-0605
    Electronic ISSN: 1522-1504
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...