GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-18
    Description: Energy intensive industries are one of the fields in which strong increases of energy efficiency and deep decarbonisation strategies are particularly challenging. Although European energy intensive industries have already achieved significant energy and greenhouse gas reductions in the past, much remains to be done to make a significant contribution to achieving European as well as national climate mitigation targets of greenhouse gas emission reductions by -80% or more (compared to the baseline of 1990). North Rhine-Westphalia (NRW) is a European hotspot for coping with this challenge, accommodating more than 10% of the energy intensive industries of the EU28. It is also the first German state to have adopted its own Climate Law, enacting state-wide CO2 emission reductions by 80% until 2050 compared to 1990. The state government initiated the project "Platform Climate Protection and Industry North-Rhine Westphalia" to identify and develop the necessary far-reaching low carbon innovation strategies for energy intensive industries. Heart of the project was a dialogue process, which involved a broad spectrum of stakeholders from steel, chemical, aluminium, cement, glass and paper producing industries. Besides enhancing and broadening the knowledge on high efficiency and low-carbon technologies within industries, the aim was to explore possible pathways and preconditions for the application of these technologies in energy intensive industries as well as to strengthen the motivation of companies for initiatives and investments in technologies with lower CO2 emissions. The results of the dialogue shall provide a basis for a possible low-carbon industry roadmap NRW and may also serve as an example for other industrialized regions in the EU and globally. The paper sketches the structured dialogue process with the stakeholders from companies as well as industrial associations and presents the learnings regarding the engagement of energy intensive industries into ambitious climate policies on a regional level. These include existing limitations as well as chances in the respective sectors on the state level, regarding their economic and technical structures as well as their innovation systems. The findings are based on more than a dozen stakeholder workshops with industry companies and more than 150 individual representatives of NRW's energy intensive industries as well as on background research in the initial phase of the project.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-18
    Description: Renewable energy plays a key role in the sustainable pathway towards a low carbon future and, despite new supply capacities, the transformation of the energy system also requires the adoption of a method which allows for the integration of increasing amounts of renewable energy. This requires a transition to more flexible processes at an industrial level and demand side management (DSM) is one possible way of achieving this transition. Currently, increased shares of variable renewable energy can cause the electricity supply to become more volatile and result in changes to the electricity market. In order to develop a new dynamic equilibrium to balance supply and demand, sufficient flexibility in demand is required. As adequate storage systems are not available in the short to medium term, the potential for large electricity consumers to operate flexibly is an attractive, pragmatic and feasible option. Recent studies in Germany suggest that there is significant potential for DSM in so-called "energy-intensive industries". However, the figures (which fall in the approximate range of 1,250-2,750 MW positive and 400-1,300 MW negative shiftable load) should be interpreted with caution. The range of industrial processes considered are diverse and vary from plant to plant, with the result that it is difficult to provide accurate calculations of the accumulated potential for Germany or the EU as a whole. Based on extensive surveys and panel discussions with representatives from energy-intensive industries (aluminum, cement, chemicals, iron & steel, pulp & paper), which together account for approximately one third of the industrial electricity demand in Germany, our paper provides an overview of both the opportunities and the barriers faced by DSM. One of the key findings is the possible loss in energy efficiency due to DSM: in order to decrease or increase production depending on the stability needs of the electricity system, plants and processes may no longer operate at their optimum levels. The effects on downstream production must also be taken into account in order to gain a more complete understanding of the overall effects of industrial DSM.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...