GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Springer Netherlands  (2)
Publikationsart
Sprache
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2023-07-20
    Beschreibung: Since Kepler, Newton and Huygens in the seventeenth century, geodesy has been concerned with determining the figure, orientation and gravitational field of the Earth. With the beginning of the space age in 1957, a new branch of geodesy was created, satellite geodesy. Only with satellites did geodesy become truly global. Oceans were no longer obstacles and the Earth as a whole could be observed and measured in consistent series of measurements. Of particular interest is the determination of the spatial structures and finally the temporal changes of the Earth's gravitational field. The knowledge of the gravitational field represents the natural bridge to the study of the physics of the Earth's interior, the circulation of our oceans and, more recently, the climate. Today, key findings on climate change are derived from the temporal changes in the gravitational field: on ice mass loss in Greenland and Antarctica, sea level rise and generally on changes in the global water cycle. This has only become possible with dedicated gravity satellite missions opening a method known as satellite gravimetry. In the first forty years of space age, satellite gravimetry was based on the analysis of the orbital motion of satellites. Due to the uneven distribution of observatories over the globe, the initially inaccurate measuring methods and the inadequacies of the evaluation models, the reconstruction of global models of the Earth's gravitational field was a great challenge. The transition from passive satellites for gravity field determination to satellites equipped with special sensor technology, which was initiated in the last decade of the twentieth century, brought decisive progress. In the chronological sequence of the launch of such new satellites, the history, mission objectives and measuring principles of the missions CHAMP, GRACE and GOCE flown since 2000 are outlined and essential scientific results of the individual missions are highlighted. The special features of the GRACE Follow-On Mission, which was launched in 2018, and the plans for a next generation of gravity field missions are also discussed.
    Beschreibung: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Schlagwort(e): ddc:526 ; Gravitational field ; Satellite gravimetry ; Satellite altimetry ; Gravitational field missions ; CHAMP ; GRACE ; GOCE ; GRACE FO ; Satellite orbits ; Satellite design ; Mission objectives ; Gravity field models ; Mass changes ; Satellite gradiometry ; Laser interferometer
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-06-09
    Beschreibung: During the last few years, the determination of high-resolution global gravity field has gained momentum due to high-accuracy satellite-derived observations and development of forward gravity modelling. Forward modelling computes the global gravitational field from mass distribution sources instead of actual gravity measurements and helps improving and complementing the medium to high-frequency components of the global gravity field models. In this study, we approximate the global gravity potential of the Earth’s upper crust based on ellipsoidal approximation and a mass layer concept. Such an approach has an advantage of spectral methods and also avoids possible instabilities due to the use of a sequence of thin ellipsoidal shells. Lateral density within these volumetric shells bounded by confocal lower and upper shell ellipsoids is used in the computation of the ellipsoidal harmonic coefficients which are then transformed into spherical harmonic coefficients on the Earth’s surface in the final step. The main outcome of this research is a spectral representation of the gravitatioal potential of the Earth’s upper crust, computed up to degree and order 3660 in terms of spherical harmonic coefficients (ROLI_EllApprox_SphN_3660). We evaluate our methodology by comparing this model with other similar forward models in the literature which show sub-cm agreement in terms of geoid undulations. Finally, EIGEN-6C4 is augmented by ROLI_EllApprox_SphN_3660 and the gravity field functionals computed from the expanded model which has about 5 km half-wavelength spatial resolution are compared w.r.t. ground-truth data in different regions worldwide. Our investigations show that the contribution of the topographic model increases the agreement up to ~ 20% in the gravity value comparisons.
    Schlagwort(e): ddc:526 ; Gravity forward modelling ; Multi-layer forward modelling ; Ellipsoidal topographic potential ; New-generation gravity field model ; Augmented gravity field models
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...