GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of elasticity 54 (1999), S. 129-140 
    ISSN: 1573-2681
    Keywords: Hill's strain ; stretch tensor ; time rate.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Based on Hill's principal components formulae, two kinds of basis-free time rate formulae for Hill's strain tensors are proposed in this paper, which are obtained for the cases of distinct stretches, double coalescence and triple coalescence. Furthermore, relations between the coefficients in the representation for the strain tensor and its time derivative are disclosed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: The long-term warming of the ocean is a critical indicator of both the past and present state of the climate system. It also provides insights about the changes to come, owing to the persistence of both decadal variations and secular trends, which the ocean records extremely well (Hansen et al., 2011; IPCC, 2013; Rhein et al., 2013; Trenberth et al., 2016; Abram et al., 2019). It is well established that the emission of greenhouse gasses by human activities is mainly responsible for global warming since the industrial revolution (IPCC, 2013; Abram et al., 2019). The increased concentration of heat-trapping greenhouse gases in the atmosphere has interfered with natural energy flows. Currently there is an energy imbalance in the Earth’s climate system of almost 1 W m−2 (Trenberth et al., 2014; von Schuckmann et al., 2016, 2020a; Wijffels et al., 2016; Johnson et al., 2018; Cheng et al., 2019a; von Schuckmann et al., 2020a). Over 90% of this excess heat is absorbed by the oceans, leading to an increase of ocean heat content (OHC) and sea level rise, mainly through thermal expansion and melting of ice over land. These processes provide a useful means to quantify climate change. The first global OHC time series by Levitus et al. (2000) identified a robust long-term 0−3000 m ocean warming from 1948−98. Since then, many other analyses of global and regional OHC data have been performed. Here, we provide the first analysis of recent ocean heating, incorporating 2020 measurements through 2020 into our analysis.
    Description: Published
    Description: 523–530
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: ocean temperature ; climate change ; climate change
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-16
    Description: The increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content (OHC). Here, we provide the first analysis of recent OHC changes through 2021 from two international groups. The world ocean, in 2021, was the hottest ever recorded by humans, and the 2021 annual OHC value is even higher than last year’s record value by 14 ± 11 ZJ (1 zetta J = 1021 J) using the IAP/CAS dataset and by 16 ± 10 ZJ using NCEI/NOAA dataset. The long-term ocean warming is larger in the Atlantic and Southern Oceans than in other regions and is mainly attributed, via climate model simulations, to an increase in anthropogenic greenhouse gas concentrations. The year-to-year variation of OHC is primarily tied to the El Niño-Southern Oscillation (ENSO). In the seven maritime domains of the Indian, Tropical Atlantic, North Atlantic, Northwest Pacific, North Pacific, Southern oceans, and the Mediterranean Sea, robust warming is observed but with distinct inter-annual to decadal variability. Four out of seven domains showed record-high heat content in 2021. The anomalous global and regional ocean warming established in this study should be incorporated into climate risk assessments, adaptation, and mitigation.
    Description: Published
    Description: 373–385
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: ocean warming
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-05-25
    Description: Changes in ocean heat content (OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum. According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ (1 Zetta Joules = 1021 Joules); and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins (the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier–fresh gets fresher” pattern, also reached its highest level on record in 2022, implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Niña event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022
    Description: Published
    Description: 963–974
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: climate change, ocean warming, ocean heat content, stratification
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...