GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: The response of the benthos to the break up of anoxia in the Kiel Bight (Western Baltic Sea), and to three succeeding events of “external” food supply, consisting of a settled autumn plankton bloom, resuspended matter and macrophyte input during winter, and of a sedimented spring phytoplankton bloom, is described on a community level. The first input of oxygen broke up anoxic conditions and made stored food resources available to decomposition. This “internal” food supply, mainly consisting of protein (folin positive matter), was followed by a drastic increase in heat production and ATP-biomass and caused a period of low redox potential, which lasted for several weeks. During this phase, a plankton bloom (dinoflagellates and diatoms) settled to the sea floor. Although there was an immediate response of benthic activity, this food input was not completely consumed by the strongly disturbed benthic community. During winter resuspended matter and the input of macrophyte debris caused another maximum in benthic activity and biomass despite the low temperature. The response to sedimentation of cells from a diatom bloom during mid March was also without any time lag and was consumed within 5–6 wk. A comparison of the amount of particles collected in a sediment trap with the increase of organic matter in the sediment demonstrated that the sediment collected four times (autumn) and seven to eight times (spring) more than measured by the sediment trap. Strong indications of food limitation of benthic activity were found. During autumn and winter these indications were caused more by physical than by biological processes. The three events of “external” food supply caused a temporary shift in the type of metabolism towards fermentation processes and reduced the redox potential. In spring the development of the benthic community was still being strongly influenced by the events of the preceding summer and autumn.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Pelagic processes and their relation to vertical flux have been studied in the Norwegian and Greenland Seas since 1986. Results of long-term sediment trap deployments and adjoining process studies are presented, and the underlying methodological and conceptional background is discussed. Recent extension of these investigations at the Barents Sea continental slope are also presented. With similar conditions of input irradiation and nutrient conditions, the Norwegian and Greenland Seas exhibit comparable mean annual rates of new and total production. Major differences can be found between these regions, however, in the hydrographic conditions constraining primary production and in the composition and seasonal development of the plankton. This is reflected in differences in the temporal patterns of vertical particle flux in relation to new production in the euphotic zone, the composition of particles exported and in different processes leading to their modification in the mid-water layers. In the Norwegian Sea heavy grazing pressure during early spring retards the accumulation of phytoplankton stocks and thus a mass sedimentation of diatoms that is often associated with spring blooms. This, in conjunction with the further seasonal development of zooplankton populations, serves to delay the annual peak in sedimentation to summer or autumn. Carbonate sedimentation in the Norwegian Sea, however, is significantly higher than in the Greenland Sea, where physical factors exert a greater control on phytoplankton development and the sedimentation of opal is of greater importance. In addition to these comparative long-term studies a case study has been carried out at the continental slope of the Barents Sea, where an emphasis was laid on the influence of resuspension and across-slope lateral transport with an analysis of suspended and sedimented material.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: The Northern North Atlantic: A Changing Environment. , ed. by Schäfer, P., Ritzrau, W., Schlüter, M. and Thiede, J. Springer, Berlin, Germany, pp. 69-79.
    Publication Date: 2020-04-01
    Description: A decade of particle flux measurements providse the basis for a comparison of the eastem and westem provinces ofthe Nordic Seas. Ice-related physical and biological seasonality as well as pelagic settings jointly control fluxes in the westem Polar Province which receives southward flowing water of Polar origin. Sediment trap data from this realm highlight a predominantly physical flux control which leads to exports of siliceous particles within the biological marginal ice zone as a prominent contributor. In the northward flowing waters of the eastem Atlantic Province, feeding Strategie . life histories and the succession of dominant mesozooplankters (copepods and pteropods) are central in controlling fluxes. Furthermore, more calcareous matter is exported here with a shift in flux seasonality towards surnrner/autumn. Dominant pelagic processes modeled numerically as to their impact on annual organic carbon exports for both provinces confirrn that interannual flux variability is related to changes in the respective control mechanisms. Annual organic carbon exports are strikingly similar in the Polar and Atlantic Provinces (2.4 and 2.9 g m-2 y-1 at 500 m depth). despite major differences in flux control. The Polar and Atlantic Provinces. however, can be distinguished according to annual fluxes of opal ( l.4 and 0.6 g m-2 y-1) and carbonate (6.8 and 10.4 g m-2 y-1). lnterannual variability may blur this in single years. Thus. it is vital to use multi-annual data sets when including particle exports in general biogeochemical province descriptions. Vertical flux profiles (collections from 500 m, l000 min both provinces and 300-600 m above the seafloor deviate from the general vertical decline of fluxes due to particle degradation during sinking. At depths 〉 1000 m secondary fluxes (laterally advected/re uspended particles) are often juxtaposed to primary (pelagic) fluxes, a pattem which is most prominent in the Atlantic Province. Spatial variability within theAtlantic Province remains poorly understood. and the same holds true for interannual variability. No proxies are at hand for this province to quantitatively relate fluxes to physical or biological pelagic properties. For the easonally ice-covered Polar Province a robust relationship exists between particle export and ambient ice-regime (Ramseier et al. this volume; Ramseier et al. 1999). Spatial flux pattems may be differentiated and interannual variability can be analyzed in this manner to improve our ability to couple pelagic export pattems with benthic and geochemical sedimentary processes in seasonally ice-covered seas.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...