GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 12 (1992), S. 345-370 
    ISSN: 1572-8986
    Keywords: Thermophoresis ; free-molecule regime ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Analytical results of the thermophoretic force on a metallic or nonmetallic spherical particle immersed into a rarefied plasma with a heat flux within the plasma are presented for the extreme case of free-molecule regime and thin plasma sheath. It has been shown that the thermophoresis is predominantly caused by atoms at low plasma temperatures with negligible gas ionization, while it is mainly due to ions and electrons at high plasma temperatures with great degree of ionization. The ion flux incident to a particle is constant on the whole sphere surface, while the electron flux to the metallic sphere is dependent on the θ-position with slightly greater value at the fore stagnation point. Consequently, there is a small difference between the metallic and nonmetallic spheres in their θ-distributions of the floating potential on the surface, which causes the thermophoretic force on a nonmetallic sphere to be appreciably greater than that on a metallic sphere at high plasma temperatures. Expressions for the total thermophoretic force on a metallic sphere and its components due to, respectively, atoms, ions, and electrons have been given in a closed form. Calculated results are also presented on the effects of pressure and of electron/heavy-particle temperature ratio. These results can be understood based on the variation of atom, ion, and electron thermal conductivities with the gas pressure, the temperature, and the temperature ratio.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 15 (1995), S. 1-23 
    ISSN: 1572-8986
    Keywords: Drag force ; evaporating particle ; free-molecule regime ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Analytical expressions are presented for the drag force acting on an evaporating or nonevaporating particle immersed in a plasma flow for the extreme case of free-molecule flow regime and thin plasma .sheath. It is shown that the drag force on a spherical particle is proportional to the square of the particle radius and to the relative velocity between the particle and the bulk plasma at low speed ratios. The existence of a relative velocity between the particle and the plasma results in a nonuniform heat flux distribution with its rnaximum value at the frontal stagnation point of tire sphere. This nonuniform distribution of the local heat fux density causes a nonuniforrn distribution of the local evaporated-mass flux and vapor reaction force around the surface of an evaporating particle, and thus induces an additional force on the particle. Consequently, the drag force acting on art evaporating particle is always greater than that on a nonevaporating one. This additional drag force due to particle evaporation is more significant for nonmetallic particles and for particle materials with lower latent heat of evaporation and lower vapor molecular mass. It increases with increasing plasma temperature and with decreasing gas pressure at the high plasma temperatures associated with appreciable gas ionization. The drag ratio increases with increasing electron/heavy-particle temperature ratio at high electron temperatures for a two-temperature plasma.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of infrared and millimeter waves 20 (1999), S. 305-315 
    ISSN: 1572-9559
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Based on the electron movement principles the beam paraxial trajectory and space trajectory equation in drifting space filled with plasma are given in this paper. The space is divided into two areas(α and β, β contains β1 and β2), the behavior of electrons in these areas is studied. The equations are theoretically or numerically solved, the focussing and transmission properties are studied and some parameters affecting these properties are discussed in detail. The relativistic effect is also taken into account. The study shows that with plasma filled the beam can be focused efficiently and transmitted with high quality by optimally choosing the plasma filling fraction and the voltage. Plasma microwave electronics stemmed from 1949, however, it developed rapidly in recent years. In the process of high power microwave study, plasma is more and more introduced into microwave source. Because of the neutralization effect of plasma, the beam can transmit with high quality, even under weak or without magnetic field, it can propagate through drifting tube or slow wave structure by its self magnetic focusing force[1–2]. By making full use of this property, microwave devices without magnetic field system can be made, this leads to a decrease in volume and weight of the device. Some experiments show that this kind of device can promote the output power and efficiency obviously. However, because of the presence of plasma, the beam's behavior changes greatly compared to those under vacuum condition. It is important to study the properties of the beam in drifting space or slow wave structure filled with plasma for the development of the device.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of infrared and millimeter waves 20 (1999), S. 559-566 
    ISSN: 1572-9559
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Under the condition of considering the plasma electrons redistribution and ion channel and the transverse oscillating of the beam after the REB incident, the dispersion equation of corrugated waveguide filled with plasma was obtained in this paper, its expressions under several conditions were also given. The results showed that whether consider these factors or not, the results would be quite different.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 9 (1989), S. 387-408 
    ISSN: 1572-8986
    Keywords: Particle drag force ; free-molecule flow regime ; pressure effect ; two-temperature plasma ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Drag force on a metallic or nonmetallic spherical particle exposed to a plasma flow is studied for the extreme case of a free-molecule regime. Analytical expressions are derived for the drag components due to, respectively, atoms, ions, and electrons and for the total drag on the whole sphere due to all the gas species. It has been shown that the drag is proportional to the square of the particle radius or the drag coefficient is independent of the particle radius. At low gas temperatures with a negligible degree of ionization, the drag is caused mainly by atoms and could be predicted by using the well-known drag expression given in ordinary-temperature rarefied gas dynamics. On the other hand, the drag is caused mainly by ions at high plasma temperatures with a great degree of ionization. The contribution of electrons to the total drag is always negligible. Ignoring gas ionization at high plasma temperatures would overestimate the particle drag. There is a little difference between metallic and nonmetallic spheres in their total drag forces, with a slightly higher value for a metallic sphere at high plasma temperatures, but usually such a small difference could be neglected in engineering calculations. The drag increases rapidly with increasing gas pressure or oncoming speed ratio. For a two-temperature plasma, the drag increases at low electron temperatures but decreases at high electron temperatures with the increase in the electron/heavy-particle temperature ratio.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 15 (1995), S. 199-219 
    ISSN: 1572-8986
    Keywords: Metallic particles ; unsteady heating ; free-molecule regime ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Analytical results are presented concerning the unsteady heating of a metallic spherical particle innnersed in a rarefied plasma. The results show that the tinte periods required for the solid-phase heating, melting, liquid-phase heating, and evaporation are all proportional to the particle radius. For estimating the time needed for the solid-phase heating and that for the melting, the additional heat transfer rmechanism due to the thermionic emission front the particle surface is usually negligible since the surface temperatures of the particle heated in the plasma are, in general, compartively low during those heating steps. Thermionic emission assumes its effect only as the higher surface temperatures of the heated particle are involved (e.g., higher than 4000 K), while radiation loss shows its effects at much lower wall temperatures. As the plasma temperature is comparatively low, radiation heat loss may restrict the surface temperature of a particle to such a low value that the effect of thermionic emission on the overall heating time can he neglected and complete evaporation of refractor y metallic particles becomes impossible. The uncertainty in the calculation of the effect of thermionic emission is associated with the choice of the value of the effective work function for the particle material.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 16 (1995), S. S71 
    ISSN: 1572-8986
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Particle drag force and thermophoresis results previous obtained are revised by including modified expressions for ion and electron components of the surface pressure. The present analysis shows that there is almost no difference between non-evaporating metallic and nonmetallic particles in their drags and there is only a little difference between those particles in their thermophoretic forces. The effect of evaporation on thermophoretic and drag forces is still marked, but the drag or thermophoretic force ratio with to without accounting for evaporation assumes somewhat different values from those obtained previously and depends notably on whether the particle is metallic or nonmetallic at high plasma temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 19 (1999), S. 33-51 
    ISSN: 1572-8986
    Keywords: Thermophoresis ; nonevaporating or evaporating particle ; free-molecule regime ; combined specular and diffuse reflection ; sphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Additional kinetic-theory analytical results are presented concerning the thermophoretic force acting on a spherical nonmetallic or metallic, nonevaporating or evaporating particle suspended in a plasma for the extreme case of free-molecule regime and thin plasma sheath. A combined specular and diffuse reflection of the atoms incident on or formed in the ion–electron recombination process at the particle surface has been taken into account in this analysis as an extension of the previous paper (Xi Chen, J. Phys. D: Appl. Phys. 30, 826–841, 1997). It has been shown that the specular reflection fraction of gas particles at the surface does not affect the thermophoretic force acting on a nonevaporating, metallic or nonmetallic, spherical particle, but they affect significantly the evaporation-added thermophoretic force. The evaporation-added thermophoretic force decreases linearly with the increase of the specular reflection fraction, and the decreasing rate for a nonmetallic evaporating particle is much greater than that for a metallic one at high plasma temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 2 (1982), S. 185-212 
    ISSN: 1572-8986
    Keywords: Heat and mass transfer ; small particles ; thermal plasmas ; exact and approximate solutions ; analytical studies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract This paper is concerned with an analytical study of the heat and mass transfer process of a single particle exposed to a thermal plasma, with emphasis on the effects which evaporation imposes on heat transfer from the plasma to the particle. The results refer mainly to an atmospheric-pressure argon plasma and, for comparison purposes, an argon-hydrogen mixture and a nitrogen plasma are also considered in a temperature range from 3000 to 16,000 K. Interactions with water droplets, alumina, tungsten, and graphite particles are considered in a range of small Reynolds numbers typical for plasma processing of fine powders. Comparisons between exact solutions of the governing equations and approximate solutions indicate the parameter range for which approximate solutions are valid. The time required for complete evaporation of a given particle can be determined from calculated values of the vaporization constant. This constant is mainly determined by the boiling (or sublimation) temperature of the particles and the density of the condensed phase. Evaporation severely reduces heat transfer to a particle and, in general, this effect is more pronounced for materials with low latent heat of evaporation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 2 (1982), S. 293-316 
    ISSN: 1572-8986
    Keywords: Heating ; melting ; and evaporation of particles ; radiation effects ; analysis ; computation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Based on exact solutions for the heat flux to a particle exposed to a thermal plasma given in a previous paper, initial unsteady heating (including heating of the solid phase, melting of the solid phase, heating of the liquid phase, and evaporation) and radiation effects are considered. Closed-form solutions can be obtained for particles with infinite thermal conductivities. The results show that the time periods required for the various steps are all proportional to the square of the particle radius, suggesting that reduced time periods which are independent of the particle radius are appropriate bases for comparison. Results are presented for three materials (alumina, tungsten, and graphite) and three types of plasmas (argon, argon-hydrogen mixture, and nitrogen). It is shown that evaporation (or sublimation) is by the slowest step among all processes in a plasma reactor if complete evaporation (or sublimation) of the particles is desired. Studies of the temperature history of particles with finite thermal conductivities show that temperature gradients within the particles depend on the ratio of the particles' thermal resistance to that of the plasma. In spite of the difference in initial heating, the analytical expressions based on infinite thermal conductivities predict the correct total time spent for both heating and evaporation even for low-conductivity materials such as alumina. The effect of radiation losses from a particle during heating becomes important for large particles, for high-boiling-point materials, and for low enthalpy differences between the plasma and the particle surface.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...