GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 8 (1991), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 85 (1991), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The utilization of glutamic acid and alanine in anoxic marine sediments was studied using sediments collected from a tidal flat on the Atlantic Ocean side of Virginia's Eastern Shore (Bordens-take Bay) and a site in the mid-Chesapeake Bay. At both sites volatile fatty acids (VFAs) were produced as intermediates in the catabolism (or oxidation) of both amino acids. In contrast, methylated amines were not produced as metabolic intermediates from either amino acid. The addition of 20 mM molybdate to sediment slurries (to inhibit bacterial sulfate reduction) led to the continuous production of VFAs from both amino acids, indicating that the majority of this VFA production from these amino acids occurred by fermentative processes. Non-catabolic uptake of these amino acids (presumably into bacterial bio-mass) also appeared to be an important process in removing alanine and glutamic acid from these sediment slurries. A kinetic model used to analyze these data indicated that ? 85% of the alanine catabolism occurred by fermentative processes, with remineralization by sulfate reducing bacteria accounting for the difference. In contrast, all of the glutamic acid catabolism appeared to occur by fermentation. Calculations using data on VFA and ΣCO2 production in molybdate inhibited sediments also suggested that acetate and formate were the predominant VFAs produced by the fermentation of alanine, and perhaps glutamic acid as well. The oxidation of dissolved, free amino acids appeared to account for a significant fraction of the ammonium production in these anoxic marine sediments, although amino acids represented less than ? 2% of the carbon sources/electron donors used by sulfate reduction. These observations suggest that the general pathway of amino acid utilization in anoxic sediments involves their oxidation by fermentative bacteria to produce compounds such as VFA or H2 which are then themselves used as substrates by either sulfate reducing or methanogenic bacteria. As such, dissolved free amino acids appear to play an important role as intermediates in carbon and nitrogen cycling in these environments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: amino acids ; ammonium production ; coastal marine sediments ; anoxic ; sulfate reduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract In sediment slurry experiments with anoxic marine sediments collected in Cape Lookout Bight, NC, and a site in mid-Chesapeake Bay, the rates of sulfate reduction and ammonium production decrease with increasing dilution of sediment with oxygen-free sea-water. The effect of sediment dilution on the rates of these processes can be described by a simple mathematical relationship, and when these rates are corrected for sediment dilution they yield values which agree well with direct measurements of these processes. In sediment slurry studies of amino acid utilization in Cape Lookout Bight sediments, the fermentative decarboxylation of glutamic acid (to γ-aminobutyric acid) or aspartic acid (to alanine or β-alanine) did not occur when either of these amino acids were added to Cape Lookout Bight slurries. The addition of glutamic acid did however lead to a small (∼1) transient build-up of β-aminoglutaric acid. Measured rates of glutamic acid uptake in these slurries also decreased with increasing sediment dilution. Molybdate inhibition experiments demonstrated that dissolved free amino acids represent 1–3% of the carbon sources/electron donors used for sulfate reduction in Cape Lookout Bight sediments. The direct oxidation of amino acids by sulfate reducing bacteria also accounts for 13–20% of the total ammonium produced. Glutamic acid, alanine, β-aminoglutaric acid, aspartic acid and asparagine are the major amino acids oxidized by sulfate reducing bacteria in Cape Lookout Bight sediments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...