GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2023-11-08
    Beschreibung: Many climate models strongly underestimate the two most important atmospheric feedbacks operating in El Niño/Southern Oscillation (ENSO), the positive (amplifying) zonal surface wind feedback and negative (damping) surface-heat flux feedback (hereafter ENSO atmospheric feedbacks, EAF), hampering realistic representation of ENSO dynamics in these models. Here we show that the atmospheric components of climate models participating in the 5th phase of the Coupled Model Intercomparison Project (CMIP5) when forced by observed sea surface temperatures (SST), already underestimate EAF on average by 23%, but less than their coupled counterparts (on average by 54%). There is a pronounced tendency of atmosphere models to simulate stronger EAF, when they exhibit a stronger mean deep convection and enhanced cloud cover over the western equatorial Pacific (WEP), indicative of a stronger rising branch of the Pacific Walker Circulation (PWC). Further, differences in the mean deep convection over the WEP between the coupled and uncoupled models explain a large part of the differences in EAF, with the deep convection in the coupled models strongly depending on the equatorial Pacific SST bias. Experiments with a single atmosphere model support the relation between the equatorial Pacific atmospheric mean state, the SST bias and the EAF. An implemented cold SST bias in the observed SST forcing weakens deep convection and reduces cloud cover in the rising branch of the PWC, causing weaker EAF. A warm SST bias has the opposite effect. Our results elucidate how biases in the mean state of the PWC and equatorial SST hamper a realistic simulation of the EAF.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-02-08
    Beschreibung: A prominent weakening in equatorial Atlantic sea surface temperature (SST) variability, occurring around the year 2000, is investigated by means of observations, reanalysis products and the linear recharge oscillator (ReOsc) model. Compared to the time period 1982–1999, during 2000–2017 the May–June–July SST variability in the eastern equatorial Atlantic has decreased by more than 30%. Coupled air–sea feedbacks, namely the positive Bjerknes feedback and the negative net heat flux damping are important drivers for the equatorial Atlantic interannual SST variability. We find that the Bjerknes feedback weakened after 2000 while the net heat flux damping increased. The weakening of the Bjerknes feedback does not appear to be fully explainable by changes in the mean state of the tropical Atlantic. The increased net heat flux damping is related to an enhanced response of the latent heat flux to the SST anomalies (SSTa). Strengthened trade winds as well as warmer SSTs are suggested to increase the air–sea specific humidity difference and hence, enhancing the latent heat flux response to SSTa. A combined effect of those two processes is proposed to be responsible for the weakened SST variability in the eastern equatorial Atlantic. The ReOsc model supports the link between reduced SST variability, weaker Bjerknes feedback and stronger net heat flux damping.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-02-08
    Beschreibung: We explore the predictability of tropical Atlantic sea surface temperature (SST) and the potential influence of climate model bias on SST predictions over the tropical Atlantic. Two statistical methods are used to examine the skill in forecasting tropical Atlantic SST anomalies (SSTAs): linear inverse modeling (LIM) and analogue forecast (AF). The statistical models are trained either with observations or with data from two control integrations of the Kiel Climate Model (KCM), which only differ with respect to the resolution of its atmospheric component. Observed SSTAs suggest that Tropical Atlantic climatic changes are potentially predictable at lead times of up to 6 months over large parts of the Tropical Atlantic. The SSTAs from the KCM version employing a high-resolution atmosphere model (KCM-HRES) is potentially predictable at a level comparable to that derived from the observations, whereas the SSTAs from the KCM version employing a low-resolution atmosphere model (KCM-LRES) is considerably less potentially predictable. We show that the enhanced potential predictability in the former KCM version can be very likely related to the improved representation of ENSO-like dynamics and its seasonality. We used the statistical models in true forecast mode, i.e. the prediction schemes were trained from data independent of the forecast period. Using observed SSTAs to train the LIM yields significant skill in forecasting observed SSTAs at lead times of up to 4 months across all calendar months, which is mostly restricted to the northern and equatorial western Tropical Atlantic. Similar patterns, but with lower skill, are found when the models’ SSTAs are used, in which LIM trained with the KCM-HRES generally yields higher skills than that from the KCM-LRES. Applying AF yields significant skills in predicting observed SSTAs over the same regions, but the forecast skills are considerably smaller. When the SSTAs together with either sea level pressure (SLP) anomalies or dynamic sea level (DSL) anomalies from the KCM are used to construct the statistical models, the prediction of observed equatorial Atlantic SSTAs can be improved, with significant skill enhancement at lead times of up to 4 months in limited regions. An optimal initial SSTA pattern is found, which results in the largest transient anomaly growth over the entire domain. Independent of external forces, this amplification is developed internally; meaning that the seasonal forecast might be more sensitive to initial conditions than currently thought.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-02-07
    Beschreibung: There is a long-standing debate on how the El Niño/Southern Oscillation (ENSO) amplitude may change during the twenty-first century in response to global warming. Here we identify the sources of uncertainty in the ENSO amplitude projections in models participating in the Coupled Model Intercomparison Phase 5 (CMIP5) and Phase 6 (CMIP6), and quantify scenario uncertainty, model uncertainty and uncertainty due to internal variability. The model projections exhibit a large spread, ranging from increasing standard deviation of up to 0.6 °C to diminishing standard deviation of up to − 0.4 °C by the end of the twenty-first century. The ensemble-mean ENSO amplitude change is close to zero. Internal variability is the main contributor to the uncertainty during the first three decades; model uncertainty dominates thereafter, while scenario uncertainty is relatively small throughout the twenty-first century. The total uncertainty increases from CMIP5 to CMIP6: while model uncertainty is reduced, scenario uncertainty is considerably increased. The models with “realistic” ENSO dynamics have been analyzed separately and categorized into models with too small, moderate and too large ENSO amplitude in comparison to instrumental observations. The smallest uncertainties are observed in the sub-ensemble exhibiting realistic ENSO dynamics and moderate ENSO amplitude. However, the global warming signal in ENSO-amplitude change is undetectable in all sub-ensembles. The zonal wind-SST feedback is identified as an important factor determining ENSO amplitude change: global warming signal in ENSO amplitude and zonal wind-SST feedback strength are highly correlated across the CMIP5 and CMIP6 models.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-02-07
    Beschreibung: Atlantic decadal-to-bidecadal variability (ADV) is described from a multimillennial control integration of a version of the Kiel Climate Model (KCM). The KCM’s ADV is the second most energetic mode of long-term North Atlantic variability in that simulation, whereas the Atlantic multidecadal variability (AMV) is the leading mode that has been described in a previous study. The KCM’s ADV can be regarded as a mixed oceanic gyre-overturning circulation mode that is forced by the North Atlantic Oscillation. The extratropical North Atlantic sea surface temperature (SST) anomalies associated with the model’s ADV initially exhibit a tripolar structure in the meridional direction, which is linked to the gyre circulation. After some years, the SST-anomaly pattern turns into a monopolar pattern located in the subpolar North Atlantic. This transition is related to the overturning circulation. The AMV and the ADV co-exist and share some similarities. Both modes of variability rely on the upper-ocean heat transport into the subpolar North Atlantic. They differ in the importance of the gyre and overturning circulations. In the ADV, gyre and overturning-heat transports into the subpolar North Atlantic are equally important in contrast to the AMV where the overturning contribution dominates.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-02-07
    Beschreibung: The growth of El Niño/Southern Oscillation (ENSO) events is determined by the balance between ocean dynamics and thermodynamics. Here we quantify the contribution of the thermodynamic feedbacks to the sea surface temperature (SST) change during ENSO growth phase by integrating the atmospheric heat fluxes over the temporarily and spatially varying mixed layer to derive an offline “slab ocean” SST. The SST change due to ocean dynamics is estimated as the residual with respect to the total SST change. In observations, 1 K SST change in the Niño3.4 region is composed of an ocean dynamical SST forcing of + 2.6 K and a thermodynamic damping of − 1.6 K, the latter mainly by the shortwave-SST (− 0.9 K) and latent heat flux-SST feedback (− 0.7 K). Most climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) underestimate the SST change due to both ocean dynamics and net surface heat fluxes, revealing an error compensation between a too weak forcing by ocean dynamics and a too weak damping by atmospheric heat fluxes. In half of the CMIP5 models investigated in this study, the shortwave-SST feedback erroneously acts as an amplifying feedback over the eastern equatorial Pacific, resulting in a hybrid of ocean-driven and shortwave-driven ENSO dynamics. Further, the phase locking and asymmetry of ENSO is investigated in the CMIP5 model ensemble. The climate models with stronger atmospheric feedbacks tend to simulate a more realistic seasonality and asymmetry of the heat flux feedbacks, and they exhibit more realistic phase locking and asymmetry of ENSO. Moreover, the almost linear latent heat flux feedback contributes to ENSO asymmetry in the far eastern equatorial Pacific through an asymmetry in the mixed layer depth. This study suggests that the dynamic and thermodynamic ENSO feedbacks and their seasonality and asymmetries are important metrics to consider for improving ENSO representation in climate models.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2024-02-07
    Beschreibung: Two atmospheric feedbacks play an important role in the dynamics of the El Nino/Southern Oscillation (ENSO), namely the amplifying zonal wind feedback and the damping heat flux feedback. Here we investigate how and why both feedbacks change under global warming in climate models participating in the 5th and 6th phase of the Coupled Model Intercomparison Project (CMIP5 and CMIP6) under the business-as-usual scenario (RCP8.5 and SSP5-8.5, respectively). The amplifying zonal wind feedback over the western equatorial Pacific (WEP) becomes significantly stronger in two third of the models, on average by 12 +/- 7% in these models. The heat flux damping feedback over the eastern and central equatorial Pacific (EEP and CEP, respectively) increases as well in nearly all models, with the damping effect increasing on average by 18 +/- 11%. The simultaneous strengthening of the two feedbacks can be explained by the stronger warming in the EEP relative to the WEP and the off-equatorial regions, which shifts the rising branch of the Pacific Walker Circulation to the east and increases the mean convection over the CEP. This in turn leads to a stronger vertical wind response during ENSO events over the CEP that strengthens both atmospheric feedbacks. We separate the climate models into sub-ensembles with STRONG and WEAK ENSO atmospheric feedbacks, as 2/3 of the models underestimate both feedbacks under present-day conditions by more than 40%, causing an error compensation in the ENSO dynamics. The biased mean state in WEAK in 20C constrains the ENSO atmospheric feedback projection in 21C, as the models of the WEAK sub-ensemble also have weaker ENSO atmospheric feedbacks in 21C. Further, due to the more realistic dynamics and teleconnections, we postulate that one should have more confidence in the ENSO predictions with models belonging to the STRONG sub-ensemble. Finally, we analyze the relation between ENSO amplitude change and ENSO atmospheric feedback change. We find that models simulating an eastward shift of the zonal wind feedback and increasing precipitation over the EEP during Eastern Pacific El Nino events tend to predict a larger ENSO amplitude in response to global warming.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2024-04-11
    Beschreibung: Future changes in the southeastern tropical Atlantic interannual sea surface temperature (SST) variability in response to increasing greenhouse gas concentrations are investigated utilizing the global climate model FOCI. In that model, the Coastal Angola Benguela Area (CABA) is among the regions of the tropical Atlantic that exhibits the largest surface warming. Under the worst-case scenario of the Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5), the SST variability in the CABA decreases by about 19% in 2070–2099 relative to 1981–2010 during the model’s peak interannual variability season May–June–July (MJJ). The weakening of the MJJ interannual temperature variability spans the upper 40 m of the ocean along the Angolan and Namibian coasts. The reduction in variability appears to be related to a diminished surface-layer temperature response to thermocline-depth variations, i.e., a weaker thermocline feedback, which is linked to changes in the mean vertical temperature gradient. Despite improvements made by embedding a high-resolution nest in the ocean a significant SST bias remains, which might have implications for the results.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...