GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2015-09-23
    Beschreibung: The Thelon basin, Nunavut, shares many similarities with the uranium-producing Athabasca basin, Saskatchewan; however, the uranium deposits associated with the Thelon basin are still poorly understood. The Kiggavik project area (AREVA Resources Canada) is located near the northeastern terminus of the Thelon basin and comprises multiple uranium deposits hosted exclusively in basement rocks. The Bong deposit is hosted dominantly by Neoarchean metagraywacke of the Woodburn Lake group. A five-phase metallogenetic model is proposed for the Bong deposit, with three stages of uraninite identified. The premineralization phase is characterized by host-rock silicification. Mineralization is separated into three main stages. Stage 1 uraninite (U1; ca. 1500 Ma) is preserved in highly fractured and altered disseminated grains that are overgrown by later stages of uraninite. Stage 2 uraninite (U2; ca. 1100 Ma) forms veinlets parallel to D 1 foliation and coats and fills fractures in organic matter nodules and blebs. Stage 2 uraninite is associated with pervasive illite that formed from ~190°C fluids ( 18 O: –6.4, 2 H: –97), which remobilized much of Stage 1 uraninite and completely overprinted Stage 1 alteration. At ~1000 Ma an oxidizing fluid deposited uraninite along redox fronts (U3) while altering and remobilizing Stage 1 and 2 uraninite. Post-uranium-oxide minerals include drusy quartz, calcite, and illite accompanied by uranyl phases (e.g., uranophane, Ca-U).
    Print ISSN: 0361-0128
    Thema: Geologie und Paläontologie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-10-31
    Beschreibung: A subseafloor replacement-style barite and sulfide occurrence was drilled in shallow waters at the Palinuro volcanic complex, the northernmost Aeolian arc volcano in the Tyrrhenian Sea, Italy. Using a lander-type drilling device, 11 successful drill holes yielded a total of 13.5 m of core from a sediment-filled depression located at a water depth of 630 to 650 m. The longest continuous drill core recovered consists of 4.84 m of massive to semimassive barite and sulfides with abundant late, native sulfur overprint. Seafloor observations suggest that the hydrothermal system associated with the formation of the subseafloor barite and sulfide ore zone is still active, although black smoker activity does not occur on the seafloor. The recovered drill core shows that the subseafloor deposit is zoned with depth. The top of the mineralized zone is comprised of a variably silicified vuggy barite-sulfide facies that shows notable polymetallic metal enrichment, while the deeper portion of the mineralized zone is dominated by massive pyrite having distinctly lower base and precious metal grades. Metal zonation of the barite and sulfide deposit is related to the evolution of the hydrothermal fluids in space and time. The barite cap and the massive pyrite present in the deeper portion of the mineralized zone appear to have formed early in the paragenesis. During the main stage of the mineralization, the barite cap was brecciated and cemented by a polymetallic assemblage of barite and pyrite with minor chalcopyrite and tetrahedrite, trace famatinite, and rare cinnabar. Lower temperature precipitates formed during the main stage of mineralization include sphalerite, galena, pyrite, opal-A, and barite, which are associated with traces of Pb-Sb-As sulfosalts such as bournonite-seligmannite, or semseyite. A distinct mineral assemblage of fine-grained anhedral enargite, hypogene covellite, chalcopyrite, and galena is commonly associated with colloform sphalerite, galena, and pyrite as a late phase of this main stage. Colloform pyrite and marcasite are the last sulfides formed in the paragenetic sequence. The deposit is interpreted to have formed from fluids having an intermediate-sulfidation state, although excursions to high- and very high sulfidation states are indicated by the presence of abundant enargite and hypogene covellite. Laser ablation and conventional sulfur isotope analyses show that pyrite formed close to the seafloor within the zone of polymetallic metal enrichment has a variable sulfur isotope composition ( 34 S = –39 to +3), whereas a more narrow range is observed in the massive pyrite at depth ( 34 S = –10 to 0). Similar variations were also documented for the late native sulfur overprint. Overall, the negative sulfur isotope ratios at depth, the intermediate- to very high sulfidation conditions during mineralization, and the abundance of native sulfur suggest contributions of magmatic volatiles to the mineralizing fluids from a degassing magma chamber at depth. Biological processes are interpreted to have played a major role during late stages of ore formation. The combination of a subseafloor replacement deposit with a massive to semimassive barite cap rock overlying massive pyrite, the intermediate- to high-sulfidation characteristics, and the strong biological influence on the late stages of mineralization are distinct from other modern seafloor massive sulfide deposits and represents a style of submarine mineralization not previously recognized in a modern volcanic arc environment. The barite and sulfide occurrence at Palinuro shares many characteristics with porphyry-related base metal veins and intermediate-sulfidation epithermal deposits, suggesting that metallogenic processes associated with arc-related magmatic-hydrothermal systems are not restricted to the subaerial environment.
    Print ISSN: 0361-0128
    Thema: Geologie und Paläontologie
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...