GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-28
    Description: EGU2011-12780 A temporary passive seismic network of 31 broad-band stations was deployed in the region around Talca and Constitución between 35°S to 36°S latitude and 71°W to 72.5°W longitude. The network was operated between March and October 2008. Thus, we recorded data prior the magnitude Mw=8.8 earthquake of 27 February 2010 at a latitude of the major slip and surface uplift. The experiment was conducted to address fundamental questions on deformation processes, crustal and mantle structures, and fluid flow. We present results of a teleseismic P receiver function study that covers the coastal region and reaches to the Andes. The aim is to determine the structure and thickness of the continental crust and constrain the state of hydration of the mantle wedge. The P-wave receiver function technique requires large teleseismic earthquakes from different distances and backazimuths. A few percent of the incident P-wave energy from a teleseismic event will be converted into S-wave (Ps) at significant and relatively sharp discontinuities beneath the station. A small converted S phase is produced that arrives at the station within the P wave coda directly after the direct P-wave. The converted Ps phase and their crustal multiples contain information about crustal properties, such as Moho depth and the crustal vp/vs ratio. We use teleseismic events with magnitudes mb 〉 5.5 at epicentral distances between 30° and 95° to examine P-to-S converted seismic phases. Our preliminary results provide new information about the thickness of the continental crust beneath the coastal region in Central Chile. At most of the stations we observed significant energy from P to S converted waves between 4 and 5 s after the direct P-wave within a positive phase interpreted as the Moho, occurring at 35 to 40 km. The great Maule earthquake of 27 February 2010 nucleated up-dip of the continental Moho. The rupture of this earthquake seems to have propagated down-dip of the Moho. The Moho reflection show a positive polarity, indicating that the mantle is either dry or only moderately hydrated. We observed converted energy from an intracrustal boundary at around 2 s that disappears near the coast. Further, positive polarity peaks occur that are possibly caused by the down going plate.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Schweizerbart
    In:  Zentralblatt für Geologie und Paläontologie / Teil 1, 1999 (7-8). pp. 669-678.
    Publication Date: 2019-01-21
    Description: The understanding of the tectonic processes shaping the Pacific margin off Costa Rica has undergone a dramatic evolution during the past 25 years. The margin, initially interpreted to be built by accretion of sediment from the ocean plate, is now interpreted as made of ophiolitic rocks that are exposed onshore, with no net accretion currently active. New seismic images indicate that upper plate tectonic erosion might be the dominant process. Erosion is accomplished in some cases through transport of large bodies from upper to lower plate by plate boundary readjustment. Subduction of seamounts locally accelerates tectonic erosion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Schweizerbart
    In:  Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 225 (1). pp. 25-37.
    Publication Date: 2020-08-07
    Description: In late 1999, seismic and seismological investigations were carried out on the Continental margin of Costa Rica. Besides conventional wide angle refraction profiles, airgun shots were fired on a sub circular profile around Osa Peninsula into Golfo Dulce and were recorded by 20 ocean bottom hydrophones deployed along the crest of Cocos Ridge and by 13 Seismometers across the ridge. The resulting uneven distribution of shots and receivers does not allow for a full 3Dtomographic inversion. However, for selected parts detailed velocity information can be obtained providing constraints on the structure of the subsurface. Preliminary results indicate that Cocos Ridge has a bowl-shaped crustal root with a thickness of nearly 20 km in its center and only small changes along strike within the first 50 km seaward of the Middle America trench.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...