GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Data mining. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (346 pages)
    Edition: 1st ed.
    ISBN: 9780128187043
    Language: English
    Note: Front Cover -- Big Data Mining for Climate Change -- Copyright -- Contents -- Preface -- 1 Big climate data -- 1.1 Big data sources -- 1.1.1 Earth observation big data -- 1.1.2 Climate simulation big data -- 1.2 Statistical and dynamical downscaling -- 1.3 Data assimilation -- 1.3.1 Cressman analysis -- 1.3.2 Optimal interpolation analysis -- 1.3.3 Three-dimensional variational analysis -- 1.3.4 Four-dimensional variational analysis -- 1.4 Cloud platforms -- 1.4.1 Cloud storage -- 1.4.2 Cloud computing -- Further reading -- 2 Feature extraction of big climate data -- 2.1 Clustering -- 2.1.1 K-means clustering -- 2.1.2 Hierarchical clustering -- 2.2 Hidden Markov model -- 2.3 Expectation maximization -- 2.4 Decision trees and random forests -- 2.5 Ridge and lasso regressions -- 2.6 Linear and quadratic discriminant analysis -- 2.6.1 Bayes classi er -- 2.6.2 Linear discriminant analysis -- 2.6.3 Quadratic discriminant analysis -- 2.7 Support vector machines -- 2.7.1 Maximal margin classi er -- 2.7.2 Support vector classi ers -- 2.7.3 Support vector machines -- 2.8 Rainfall estimation -- 2.9 Flood susceptibility -- 2.10 Crop recognition -- Further reading -- 3 Deep learning for climate patterns -- 3.1 Structure of neural networks -- 3.2 Back propagation neural networks -- 3.2.1 Activation functions -- 3.2.2 Back propagation algorithms -- 3.3 Feedforward multilayer perceptrons -- 3.4 Convolutional neural networks -- 3.5 Recurrent neural networks -- 3.5.1 Input-output recurrent model -- 3.5.2 State-space model -- 3.5.3 Recurrent multilayer perceptrons -- 3.5.4 Second-order network -- 3.6 Long short-term memory neural networks -- 3.7 Deep networks -- 3.7.1 Deep learning -- 3.7.2 Boltzmann machine -- 3.7.3 Directed logistic belief networks -- 3.7.4 Deep belief nets -- 3.8 Reinforcement learning -- 3.9 Dendroclimatic reconstructions. , 3.10 Downscaling climate variability -- 3.11 Rainfall-runoff modeling -- Further reading -- 4 Climate networks -- 4.1 Understanding climate systems as networks -- 4.2 Degree and path -- 4.3 Matrix representation of networks -- 4.4 Clustering and betweenness -- 4.5 Cut sets -- 4.6 Trees and planar networks -- 4.7 Bipartite networks -- 4.8 Centrality -- 4.8.1 Degree centrality -- 4.8.2 Closeness centrality -- 4.8.3 Betweenness centrality -- 4.9 Similarity -- 4.9.1 Cosine similarity -- 4.9.2 Pearson similarity -- 4.10 Directed networks -- 4.11 Acyclic directed networks -- 4.12 Weighted networks -- 4.12.1 Vertex strength -- 4.12.2 Weight-degree/weight-weight correlation -- 4.12.3 Weighted clustering -- 4.12.4 Shortest path -- 4.13 Random walks -- 4.14 El Niño southern oscillation -- 4.15 North Atlantic oscillation -- Further reading -- 5 Random climate networks and entropy -- 5.1 Regular networks -- 5.1.1 Fully connected networks -- 5.1.2 Regular ring-shaped networks -- 5.1.3 Star-shaped networks -- 5.2 Random networks -- 5.2.1 Giant component -- 5.2.2 Small component -- 5.3 Con guration networks -- 5.3.1 Edge probability and common neighbor -- 5.3.2 Degree distribution -- 5.3.3 Giant components -- 5.3.4 Small components -- 5.3.5 Directed random network -- 5.4 Small-world networks -- 5.4.1 Main models -- 5.4.2 Degree distribution -- 5.4.3 Clustering -- 5.4.4 Mean distance -- 5.5 Power-law degree distribution -- 5.5.1 Price's models -- 5.5.2 Barabasi-Albert models -- 5.6 Dynamics of random networks -- 5.7 Entropy and joint entropy -- 5.8 Conditional entropy and mutual information -- 5.9 Entropy rate -- 5.10 Entropy-based climate network -- 5.11 Entropy-based decision tree -- Further reading -- 6 Spectra of climate networks -- 6.1 Understanding atmospheric motions via network spectra -- 6.2 Adjacency spectra -- 6.2.1 Maximum degree -- 6.2.2 Diameter. , 6.2.3 Paths of length k -- 6.3 Laplacian spectra -- 6.3.1 Maximum degree -- 6.3.2 Connectivity -- 6.3.3 Spanning tree -- 6.3.4 Degree sequence -- 6.3.5 Diameter -- 6.4 Spectrum centrality -- 6.4.1 Eigenvector centrality -- 6.4.2 Katz centrality -- 6.4.3 Pagerank centrality -- 6.4.4 Authority and hub centralities -- 6.5 Network eigenmodes -- 6.6 Spectra of complete networks -- 6.7 Spectra of small-world networks -- 6.8 Spectra of circuit and wheel network -- 6.9 Spectral density -- 6.10 Spectrum-based partition of networks -- Further reading -- 7 Monte Carlo simulation of climate systems -- 7.1 Random sampling -- 7.1.1 Uniform distribution -- 7.1.2 Nonuniform distribution -- 7.1.3 Normal distribution -- 7.2 Variance reduction technique -- 7.2.1 Control variable method -- 7.2.2 Control vector method -- 7.3 Strati ed sampling -- 7.4 Sample paths for Brownian motion -- 7.4.1 Cholesky and Karhounen-Loève expansions -- 7.4.2 Brownian bridge -- 7.5 Quasi-Monte Carlo method -- 7.5.1 Discrepancy -- 7.5.2 Koksma-Hlawka inequality -- 7.5.3 Van der Corput sequence -- 7.5.4 Halton sequence -- 7.5.5 Faure sequence -- 7.6 Markov chain Monte Carlo -- 7.7 Gibbs sampling -- Further reading -- 8 Sparse representation of big climate data -- 8.1 Global positioning -- 8.1.1 Multidimensional scaling -- 8.1.2 Local rigid embedding -- 8.2 Embedding rules -- 8.2.1 Attractors and fractal dimension -- 8.2.2 Delay embedding -- 8.2.3 Multichannel singular spectrum analysis -- 8.2.4 Recurrence networks -- 8.3 Sparse recovery -- 8.3.1 Sparse interpolation -- 8.3.2 Sparse approximation -- 8.3.3 Greedy algorithms -- 8.4 Sparse representation of climate modeling big data -- 8.5 Compressive sampling of remote sensing big data -- 8.5.1 s-Sparse approximation -- 8.5.2 Minimal samples -- 8.5.3 Orthogonal matching pursuit -- 8.5.4 Compressive sampling matching pursuit. , 8.5.5 Iterative hard thresholding -- 8.6 Optimality -- 8.6.1 Optimization algorithm for compressive sampling -- 8.6.2 Chambolle and Pock's primal-dual algorithm -- Further reading -- 9 Big-data-driven carbon emissions reduction -- 9.1 Precision agriculture -- 9.2 Oil exploitation -- 9.3 Smart buildings -- 9.4 Smart grids -- 9.5 Smart cities -- Further reading -- 10 Big-data-driven low-carbon management -- 10.1 Large-scale data envelopment analysis -- 10.2 Natural resource management -- 10.3 Roadway network management -- 10.4 Supply chain management -- 10.5 Smart energy management -- Further reading -- 11 Big-data-driven Arctic maritime transportation -- 11.1 Trans-Arctic routes -- 11.2 Sea-ice remote-sensing big data -- 11.2.1 Arctic sea-ice concentration -- 11.2.2 Melt ponds -- 11.2.3 Arctic sea-ice extent -- 11.2.4 Arctic sea-ice thickness -- 11.2.5 Arctic sea-ice motion -- 11.2.6 Comprehensive integrated observation system -- 11.3 Sea-ice modeling big data -- 11.4 Arctic transport accessibility model -- 11.5 Economic and risk assessments of Arctic routes -- 11.6 Big-data-driven dynamic optimal trans-Arctic route system -- 11.7 Future prospects -- Further reading -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Climatic changes -- Mathematical models. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (494 pages)
    Edition: 1st ed.
    ISBN: 9780128005835
    DDC: 551.60151
    Language: English
    Note: Front Cover -- Mathematical and Physical Fundamentals of Climate Change -- Copyright -- Contents -- Preface: Interdisciplinary Approaches to Climate Change Research -- Chapter 1: Fourier Analysis -- 1.1 Fourier Series and Fourier Transform -- 1.2 Bessel's Inequality and Parseval's Identity -- 1.3 Gibbs Phenomenon -- 1.4 Poisson Summation Formulas and Shannon Sampling Theorem -- 1.5 Discrete Fourier Transform -- 1.6 Fast Fourier Transform -- 1.7 Heisenberg Uncertainty Principle -- 1.8 Case Study: Arctic Oscillation Indices -- Problems -- Bibliography -- Chapter 2: Time-Frequency Analysis -- 2.1 Windowed Fourier Transform -- 2.2 Wavelet Transform -- 2.3 Multiresolution Analyses and Wavelet Bases -- 2.3.1 Multiresolution Analyses -- 2.3.2 Discrete Wavelet Transform -- 2.3.3 Biorthogonal Wavelets, Bivariate Wavelets,and Wavelet Packet -- 2.4 Hilbert Transform, Analytical Signal, and Instantaneous Frequency -- 2.5 Wigner-Ville Distribution and Cohen's Class -- 2.6 Empirical Mode Decompositions -- Problems -- Bibliography -- Chapter 3: Filter Design -- 3.1 Continuous Linear Time-Invariant Systems -- 3.2 Analog Filters -- 3.3 Discrete Linear Time-Invariant Systems -- 3.3.1 Discrete Signals -- 3.3.2 Discrete Convolution -- 3.3.3 Discrete System -- 3.3.4 Ideal Digital Filters -- 3.3.5 Z-Transforms -- 3.3.6 Linear Difference Equations -- 3.4 Linear-Phase Filters -- 3.4.1 Four Types of Linear-Phase Filters -- 3.4.2 Structure of Linear-Phase Filters -- 3.5 Designs of FIR Filters -- 3.5.1 Fourier Expansions -- 3.5.2 Window Design Method -- 3.5.3 Sampling in the Frequency Domain -- 3.6 IIR Filters -- 3.6.1 Impulse Invariance Method -- 3.6.2 Matched Z-Transform Method -- 3.6.3 Bilinear Transform Method -- 3.7 Conjugate Mirror Filters -- Problems -- Bibliography -- Chapter 4: Remote Sensing -- 4.1 Solar and Thermal Radiation. , 4.2 Spectral Regions and Optical Sensors -- 4.3 Spatial Filtering -- 4.4 Spatial Blurring -- 4.5 Distortion Correction -- 4.6 Image Fusion -- 4.7 Supervised and Unsupervised Classification -- 4.8 Remote Sensing of Atmospheric Carbon Dioxide -- 4.9 Moderate Resolution Imaging Spectroradiometer Data Products and Climate Change -- Problems -- Bibliography -- Chapter 5: Basic Probability and Statistics -- 5.1 Probability Space, Random Variables, and Their Distributions -- 5.1.1 Discrete Random Variables -- 5.1.2 Continuous Random Variables -- 5.1.3 Properties of Expectations and Variances -- 5.1.4 Distributions of Functions of Random Variables -- 5.1.5 Characteristic Functions -- 5.2 Jointly Distributed Random Variables -- 5.3 Central Limit Theorem and Law of Large Numbers -- 5.4 Minimum Mean Square Error -- 5.5 2-Distribution, t-Distribution, and F-Distribution -- 5.6 Parameter Estimation -- 5.7 Confidence Interval -- 5.8 Tests of Statistical Hypotheses -- 5.9 Analysis of Variance -- 5.10 Linear Regression -- 5.11 Mann-Kendall Trend Test -- Problems -- Bibliography -- Chapter 6: Empirical Orthogonal Functions -- 6.1 Random Vector Fields -- 6.2 Classical EOFs -- 6.3 Estimation of EOFs -- 6.4 Rotation of EOFs -- 6.5 Complex EOFs and Hilbert EOFs -- 6.6 Singular Value Decomposition -- 6.7 Canonical Correlation Analysis -- 6.8 Singular Spectrum Analysis -- 6.9 Principal Oscillation Patterns -- 6.9.1 Normal Modes -- 6.9.2 Estimates of Principal Oscillation Patterns -- Problems -- Bibliography -- Chapter 7: Random Processes and Power Spectra -- 7.1 Stationary and Non-stationary Random Processes -- 7.2 Markov Process and Brownian Motion -- 7.3 Calculus of Random Processes -- 7.4 Spectral Analysis -- 7.4.1 Linear Time-Invariant System for WSS Processes -- 7.4.2 Power Spectral Density -- 7.4.3 Shannon Sampling Theorem for Random Processes -- 7.5 Wiener Filtering. , 7.6 Spectrum Estimation -- 7.7 Significance Tests of Climatic Time Series -- 7.7.1 Fourier Power Spectra -- 7.7.2 Wavelet Power Spectra -- Problems -- Bibliography -- Chapter 8: Autoregressive Moving Average Models -- 8.1 ARMA Processes -- 8.1.1 AR(p) Processes -- 8.1.2 MA(q) Processes -- 8.1.3 Shift Operator -- 8.1.4 ARMA(p,q) Processes -- 8.2 Yule-Walker Equation andSpectral Density -- 8.3 Prediction Algorithms -- 8.3.1 Innovation Algorithm -- 8.3.2 Durbin-Lovinson Algorithm -- 8.3.3 Kolmogorov's Formula -- 8.4 Asymptotic Theory -- 8.4.1 Gramer-Wold Device -- 8.4.2 Asymptotic Normality -- 8.5 Estimates of Means and CovarianceFunctions -- 8.6 Estimation for ARMA Models -- 8.6.1 General Linear Model -- 8.6.2 Estimation for AR(p) Processes -- 8.6.3 Estimation for ARMA(p,q) Processes -- 8.7 ARIMA Models -- 8.8 Multivariate ARMA Processes -- 8.9 Application in Climatic and Hydrological Research -- Problems -- Bibliography -- Chapter 9: Data Assimilation -- 9.1 Concept of Data Assimilation -- 9.2 Cressman Method -- 9.3 Optimal Interpolation Analysis -- 9.4 Cost Function and Three-Dimensional Variational Analysis -- 9.5 Dual of the Optimal Interpolation -- 9.6 Four-Dimensional Variational Analysis -- 9.7 Kalman Filter -- Problems -- Bibliography -- Chapter 10: Fluid Dynamics -- 10.1 Gradient, Divergence, and Curl -- 10.2 Circulation and Flux -- 10.3 Green's Theorem, Divergence Theorem, and Stokes's Theorem -- 10.4 Equations of Motion -- 10.4.1 Continuity Equation -- 10.4.2 Euler's Equation -- 10.4.3 Bernoulli's Equation -- 10.5 Energy Flux and Momentum Flux -- 10.6 Kelvin Law -- 10.7 Potential Function and Potential Flow -- 10.8 Incompressible Fluids -- Problems -- Bibliography -- Chapter 11: Atmospheric Dynamics -- 11.1 Two Simple Atmospheric Models -- 11.1.1 The Single-Layer Model -- 11.1.2 The Two-Layer Model -- 11.2 Atmospheric Composition. , 11.3 Hydrostatic Balance Equation -- 11.4 Potential Temperature -- 11.5 Lapse Rate -- 11.5.1 Adiabatic Lapse Rate -- 11.5.2 Buoyancy Frequency -- 11.6 Clausius-Clapeyron Equation -- 11.6.1 Saturation Mass Mixing Radio -- 11.6.2 Saturation Adiabatic Lapse Rate -- 11.6.3 Equivalent Potential Temperature -- 11.7 Material Derivatives -- 11.8 Vorticity and Potential Vorticity -- 11.9 Navier-Stokes Equation -- 11.9.1 Navier-Stokes Equation in an Inertial Frame -- 11.9.2 Navier-Stokes Equation in a Rotating Frame -- 11.9.3 Component Form of the Navier-Stokes Equation -- 11.10 Geostrophic Balance Equations -- 11.11 Boussinesq Approximation and Energy Equation -- 11.12 Quasi-Geostrophic Potential Vorticity -- 11.13 Gravity Waves -- 11.13.1 Internal Gravity Waves -- 11.13.2 Inertia Gravity Waves -- 11.14 Rossby Waves -- 11.15 Atmospheric Boundary Layer -- Problems -- Bibliography -- Chapter 12: Oceanic Dynamics -- 12.1 Salinity and Mass -- 12.2 Inertial Motion -- 12.3 Oceanic Ekman Layer -- 12.3.1 Ekman Currents -- 12.3.2 Ekman Mass Transport -- 12.3.3 Ekman Pumping -- 12.4 Geostrophic Currents -- 12.4.1 Surface Geostrophic Currents -- 12.4.2 Geostrophic Currents from Hydrography -- 12.5 Sverdrup's Theorem -- 12.6 Munk's Theorem -- 12.7 Taylor-Proudman Theorem -- 12.8 Ocean-Wave Spectrum -- 12.8.1 Spectrum -- 12.8.2 Digital Spectrum -- 12.8.3 Pierson-Moskowitz Spectrum -- 12.9 Oceanic Tidal Forces -- Problems -- Bibliography -- Chapter 13: Glaciers and Sea Level Rise -- 13.1 Stress and Strain -- 13.2 Glen's Law and Generalized Glen's Law -- 13.3 Density of Glacier Ice -- 13.4 Glacier Mass Balance -- 13.5 Glacier Momentum Balance -- 13.6 Glacier Energy Balance -- 13.7 Shallow-Ice and Shallow-Shelf Approximations -- 13.8 Dynamic Ice Sheet Models -- 13.9 Sea Level Rise -- 13.10 Semiempirical Sea Level Models -- Problems -- Bibliography. , Chapter 14: Climate and Earth System Models -- 14.1 Energy Balance Models -- 14.1.1 Zero-Dimensional EBM -- 14.1.2 One-Dimensional EBM -- 14.2 Radiative Convective Models -- 14.3 Statistical Dynamical Models -- 14.4 Earth System Models -- 14.4.1 Atmospheric Models -- 14.4.2 Oceanic Models -- 14.4.3 Land Surface Models -- 14.4.4 Sea Ice Models -- 14.5 Coupled Model Intercomparison Project -- 14.6 Geoengineering Model Intercomparison Project -- Problems -- Bibliography -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...