GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Organometallic polymers. ; Chemical reactions. ; Organometallic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (501 pages)
    Edition: 1st ed.
    ISBN: 9780128232620
    DDC: 547.05
    Language: English
    Note: Front Cover -- Metal-Organic Frameworks for Chemical Reactions -- Copyright Page -- Contents -- List of contributors -- 1 Metal-organic frameworks and their composites -- 1.1 Introduction -- 1.2 Metal-organic framework composites -- 1.2.1 Processing of metal-organic framework composites -- 1.2.2 Types of metal-organic framework composites -- 1.2.2.1 Metal-organic framework-polymer composites -- 1.2.2.2 Metal-organic framework-quantum dot composites -- 1.2.2.3 Metal-organic framework-metal nanoparticle composites -- 1.2.2.4 Metal-organic framework-graphene oxide composites -- 1.2.2.5 Metal-organic framework-polyoxometalate composites -- 1.2.2.6 Metal-organic framework-enzyme composites -- 1.2.2.7 Metal-organic framework-cellulose composites -- 1.2.2.8 Metal-organic framework-silica composites -- 1.2.2.9 Metal-organic framework-activated carbon composites -- 1.2.2.10 Metal-organic framework-aluminum composites -- 1.2.2.11 Metal-organic framework-molecular species composites -- 1.2.2.12 Metal-organic framework-hybrid composites -- 1.3 Characterization of metal-organic framework composites -- 1.3.1 X-ray diffraction analysis -- 1.3.2 X-ray photoelectron spectroscopy -- 1.3.3 Fourier-transform infrared spectroscopy -- 1.3.4 Scanning electron microscopy analysis -- 1.4 Conclusion -- References -- 2 Metal-organic framework for batteries and supercapacitors -- 2.1 Introduction -- 2.2 Metal-organic frameworks -- 2.3 Metal-organic frameworks for batteries -- 2.3.1 Lithium-ion batteries -- 2.3.2 Sodium-ion batteries -- 2.3.3 Li-O2 batteries -- 2.3.4 Li-S batteries -- 2.4 Metal-organic frameworks for supercapacitors -- 2.4.1 Metallic oxides/sulfides for supercapacitors -- 2.4.2 Carbon for supercapacitors -- 2.5 Conclusion -- References -- 3 Titanium-based metal-organic frameworks for photocatalytic applications -- 3.1 Introduction -- 3.1.1 The Ti-chemistry. , 3.2 Preparation of titanium-based metal-organic frameworks and the selection of precursors -- 3.2.1 Direct synthesis -- 3.2.2 Solvothermal synthesis -- 3.2.3 Ultrasonic and microwave-assisted synthesis -- 3.2.4 The method of coordination-covalent combination -- 3.2.5 Method of postsynthetic cation exchange -- 3.2.6 Vapor-assisted crystallization method -- 3.2.7 Synthesis of titanium-based metal-organic framework composites -- 3.3 The structure of titanium-based metal-organic frameworks -- 3.3.1 Photocatalytic application of titanium-based metal-organic frameworks -- 3.4 Photocatalytic oxidation reaction -- 3.4.1 Titanium-based metal-organic framework composites -- 3.4.2 Photocatalytic NO oxidation and antibacterial activity -- 3.4.3 Photocatalytic CO2 reduction -- 3.4.4 Photocatalytic H2 generation from water splitting -- 3.4.5 Photocatalytic degradation of organic pollutants -- 3.4.6 Photocatalytic polymerization -- 3.4.7 Photocatalytic deoximation reaction -- 3.4.8 Photocatalytic sensors -- 3.5 Conclusion -- References -- 4 Electrochemical aspects of metal-organic frameworks -- 4.1 Introduction -- 4.2 Electrochemical synthesis of metal-organic frameworks -- 4.2.1 Direct electrosynthesis of metal-organic frameworks -- 4.2.1.1 Anodic dissolution -- 4.2.1.2 Reductive deprotonation -- 4.2.2 Indirect electrosynthesis of metal-organic frameworks -- 4.2.2.1 Anchoring of a linker -- 4.2.2.2 Galvanic displacement -- 4.2.2.3 Electrophoretic deposition -- 4.2.2.4 Self-templated synthesis from metal oxide/hydroxide nanostructures -- 4.3 Electrochemical applications of metal-organic frameworks -- 4.3.1 Battery applications of various metal-organic frameworks -- 4.3.1.1 Metal-organic frameworks for Li-ion batteries -- 4.3.1.2 Metal-organic frameworks for Li-S batteries and other batteries -- 4.3.2 Supercapacitors applications of various metal-organic frameworks. , 4.3.3 Electrocatalysis applications of various metal-organic frameworks -- 4.3.4 Electrochemical sensing applications of various metal-organic frameworks -- 4.3.5 Other electrochemical applications of metal-organic frameworks -- 4.4 Conclusion -- Acknowledgment -- References -- 5 Permeable metal-organic frameworks for fuel (gas) storage applications -- 5.1 Introduction -- 5.2 Concept of porosity in fuel storage -- 5.3 Permeable metal-organic frameworks for H2 storage application -- 5.4 Permeable metal-organic frameworks for CH4 storage applications -- 5.5 Permeable metal-organic frameworks for C2H2 storage applications -- 5.6 Permeable metal-organic frameworks for CO2 storage applications -- 5.7 Conclusion -- Acknowledgment -- References -- 6 Excessively paramagnetic metal organic framework nanocomposites -- 6.1 Introduction -- 6.2 Discussion and applications -- 6.3 Conclusion -- References -- 7 Expanding energy prospects of metal-organic frameworks -- 7.1 Introduction -- 7.2 Metal-organic frameworks in Li-ion batteries -- 7.3 Applications of metal-organic frameworks as electrode material for lithium-ion batteries -- 7.4 Applications of high conductive metal-organic frameworks -- 7.5 Utilization of metal-organic frameworks as electric double-layer capacitors (supercapacitors) -- 7.5.1 Applications of optimizing the surface area -- 7.6 Utilization of lithium-oxygen as separators -- 7.7 Utilization of solid-state electrolytes -- 7.8 Applications of electrode-electrolyte alliances -- 7.9 Fuel cell applications -- 7.10 Electrocatalytic applications -- 7.11 Conclusion -- References -- 8 Metal-organic framework-based materials and renewable energy -- 8.1 Introduction -- 8.2 0D-metal-organic framework-based materials-nanoparticles -- 8.2.1 Multishell 0D-metal-organic framework-based materials-nanoparticles. , 8.2.2 Hollow 0D-metal-organic framework-based materials-nanoparticles -- 8.3 1D-metal-organic framework-based materials-nanoparticles -- 8.3.1 Nanotube 1D-metal-organic framework-based materials-nanoparticles -- 8.3.2 Nanorod 1D-metal-organic framework-based materials-nanoparticles -- 8.3.3 Nanowire 1D-metal-organic framework-based materials-nanoparticles -- 8.4 2D-metal-organic framework-based materials-nanoparticles -- 8.4.1 Nanosheet 2D-metal-organic framework-based materials-nanoparticles -- 8.4.2 Holey 2D-metal-organic framework-based materials-nanoparticles -- 8.5 3D-metal-organic framework-based materials-nanoparticles -- 8.5.1 Array 3D-metal-organic framework-based materials-nanoparticles -- 8.5.2 Hierarchical 3D-metal-organic framework-based materials-nanoparticles -- 8.5.3 Superstructured 3D-metal-organic framework-based materials-nanoparticles -- 8.6 Conclusion -- Acknowledgments -- References -- 9 Applications of metal-organic frameworks in analytical chemistry -- 9.1 Introduction -- 9.2 Desirable characteristics of MOFs for analytical chemistry applications -- 9.3 Recent applications -- 9.3.1 Recent applications in sample preparation -- 9.3.1.1 Solid-phase extraction -- 9.3.1.2 Dispersive solid-phase extraction -- 9.3.1.3 Solid-phase microextraction -- 9.3.1.4 Matrix solid-phase dispersion -- 9.3.1.5 Stir bar sorptive extraction -- 9.3.2 Recent applications in chromatography -- 9.3.2.1 Gas chromatography -- 9.3.2.2 Liquid chromatography -- 9.3.2.3 Electrophoretic separations -- 9.3.3 Recent applications in sensor development -- 9.3.3.1 Electrochemical sensors -- 9.3.4 Electroluminescent/optical sensors -- 9.4 Conclusion and future remarks -- Acknowledgement -- References -- 10 Modified metal-organic frameworks as photocatalysts -- 10.1 Introduction -- 10.2 Structure, merits, and strategies -- 10.3 Metal-organic framework modification. , 10.3.1 Ligands and clusters -- 10.3.2 Metals -- 10.3.3 Semiconductors -- 10.3.4 Dyes -- 10.3.5 Composites/hybrids -- 10.4 Applications -- 10.4.1 Hydrogen production -- 10.4.2 Water splitting -- 10.4.3 Other applications -- 10.5 Conclusion and outlook -- Acknowledgments -- Abbreviations -- References -- 11 The sensing applications of metal-organic frameworks and their basic features affecting the fate of detection -- 11.1 Introduction -- 11.2 Type of metal-organic frameworks -- 11.2.1 MOF-5 -- 11.2.2 HKUST-1 -- 11.2.3 UiO -- 11.2.4 ZIF-8 and ZIF-67 -- 11.2.5 MOF-76 -- 11.2.6 MIL-101 -- 11.3 Pore diameter -- 11.4 Pore morphology -- 11.5 Combination with different nanoparticles -- 11.6 The sensing applications carried out with metal-organic frameworks -- 11.6.1 Gas-sensing applications -- 11.6.2 Metal ion sensing applications -- 11.6.3 Hydrophobic molecule sensing applications -- 11.7 Conclusion -- References -- 12 Thermomechanical and anticorrosion characteristics of metal-organic frameworks -- 12.1 Introduction -- 12.2 Design of metal-organic frameworks -- 12.2.1 Key structures in metal-organic frameworks -- 12.2.2 Dimensionality of metal-organic frameworks -- 12.2.3 Methods for the construction of metal-organic framework structures -- 12.2.3.1 Hydro(solvo)thermal method -- 12.2.3.2 Microwave and ultrasonic methods -- 12.2.3.3 Electrochemical production -- 12.2.3.4 Diffusion method -- 12.2.3.5 Mechanochemical synthesis -- 12.2.3.6 Solvent evaporation and isothermal synthesis -- 12.3 Stability of metal-organic frameworks -- 12.3.1 Various aspects regarding the stability of metal-organic frameworks -- 12.3.1.1 Thermal stability of metal-organic frameworks -- 12.3.1.2 Mechanical stability -- 12.3.1.3 Chemical stability -- 12.3.1.4 Water stability -- 12.4 Application -- 12.4.1 Anticorrosion properties of metal-organic frameworks. , 12.4.1.1 Metal-organic frameworks as a corrosion inhibitors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Organic wastes-Recycling. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (374 pages)
    Edition: 1st ed.
    ISBN: 9780128233504
    DDC: 363.7288
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Electrochemical sensors. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (341 pages)
    Edition: 1st ed.
    ISBN: 9780128225134
    Series Statement: Micro and Nano Technologies Series
    DDC: 543
    Language: English
    Note: Front Cover -- Nanomaterials-based Electrochemical Sensors: Properties, Applications, and Recent Advances -- Copyright Page -- Contents -- List of contributors -- 1 Introduction: nanomaterials and electrochemical sensors -- 1.1 Introduction -- 1.2 Voltammetric methods -- 1.3 Cyclic voltammetry -- 1.4 Differential pulse voltammetry -- 1.5 Square wave voltammetry -- 1.6 Electrochemical impedance spectroscopy -- 1.7 Electronic tongue: concepts, principles, and applications -- 1.8 Future prospects -- 1.9 Conclusion -- References -- 2 Nanomaterial properties and applications -- 2.1 Nanomaterials -- 2.2 History -- 2.3 Nanomaterial type -- 2.3.1 According to their dimension -- 2.3.2 According to origin -- 2.3.3 According to chemical composition -- 2.3.4 Carbon-based nanomaterials -- 2.4 Metal nanomaterials -- 2.4.1 Bimetallic nanomaterials -- 2.5 Metal oxide nanomaterials -- 2.5.1 Composite nanomaterials -- 2.5.2 Metal-Organic Frameworks -- 2.5.3 Silicates -- 2.6 Properties of nanomaterials -- 2.6.1 Optical properties -- 2.6.2 Electronics properties -- 2.6.3 Mechanical Properties -- 2.6.4 Magnetic properties -- 2.6.5 Thermal properties -- 2.6.6 Physiochemical properties -- 2.7 Application -- 2.7.1 As a chemical catalyst -- 2.7.2 In food and agriculture -- 2.7.3 In energy harvesting -- 2.7.4 In medication and drug -- 2.7.5 Applications in electronics -- 2.7.6 In mechanical industries -- 2.7.7 In the environment -- 2.8 Conclusion -- References -- 3 Analytical techniques for nanomaterials -- 3.1 Introduction -- 3.2 Different analytical techniques for nanomaterials -- 3.2.1 Electron Microscopy -- 3.2.1.1 Transmission electron microscope -- 3.2.1.2 Scanning electron microscope -- 3.2.2 Dynamic light scattering -- 3.2.2.1 Correlation function -- 3.2.3 Atomic force microscope -- 3.2.4 X-ray diffraction -- 3.2.5 Zeta potential instrument. , 3.2.6 Emmett, Brunauer, and Teller or surface area -- 3.2.7 Fourier transform infrared spectroscopy -- 3.2.8 Thermogravimetric analysis -- 3.3 Conclusion -- References -- 4 Toxicity of nanomaterials -- 4.1 Introduction -- 4.1.1 Nanomaterials -- 4.1.2 Effect of physicochemical properties of nanomaterials on toxicity -- 4.2 Toxic effects of nanomaterials on humans and animals -- 4.3 Toxic effects of nanomaterials on microorganisms -- 4.4 Toxic effects of nanoparticles on plants -- 4.5 Assessment of toxicity of nanomaterials -- 4.5.1 Cytotoxic assays -- 4.5.1.1 5-Diphenyltetrazolium bromide assay -- 4.5.1.2 Reactive oxygen species/oxidative assays -- 4.5.1.3 Neutral red uptake assay -- 4.5.1.4 Apoptosis assay -- 4.5.2 Genotoxicity/mutagenicity assays -- 4.5.2.1 In vitro mammalian chromosomal aberration test -- 4.5.2.2 In vitro mammalian cell gene mutation tests using the Hprt and xprt Genes -- 4.5.2.3 In vitro mammalian micronucleus test -- 4.5.3 In vivo assessment of nanomaterials -- 4.5.3.1 Mammalian bone marrow chromosome aberration test -- 4.5.3.2 Mammalian erythrocyte micronucleus test (OECD 474-TG) -- 4.5.4 In silico models -- 4.6 Conclusion and future prospects -- Acknowledgements -- References -- 5 Electrochemical sensors and their types -- 5.1 Introduction -- 5.1.1 Electroanalytical chemistry -- 5.1.1.1 Electroanalytical techniques -- 5.1.1.2 Recent developments in detection techniques -- 5.1.1.3 Advantages -- 5.1.1.4 Improvements needed -- 5.1.2 Sensors -- 5.1.2.1 Ideal sensor -- 5.1.2.2 Chemical sensors -- 5.1.2.3 Types of chemical sensors -- 5.1.3 Electrochemical sensors -- 5.1.3.1 Construction of electrochemical sensors -- 5.1.3.2 Advantages of electrochemical sensors -- 5.1.3.3 Types of electrochemical sensors -- 5.1.4 Cyclic voltammetry -- 5.1.4.1 Basic principle of cyclic voltammetry -- 5.1.5 Applications of electrochemical sensors. , 5.1.6 Electrochemical sensing of heavy metal ions -- 5.1.6.1 General experimental setup -- 5.1.7 Carbon-based electrode materials -- 5.1.7.1 Glassy carbon electrodes -- 5.1.7.2 Chemically modified electrodes -- 5.1.7.3 Material used for chemical modification of a glassy carbon electrode -- 5.2 Conclusion -- References -- 6 Electrochemical sensors and nanotechnology -- Objectives -- 6.1 Introduction -- 6.2 Nanotechnology -- 6.2.1 Drug delivery -- 6.2.2 Nanofilms -- 6.2.3 Water filtration -- 6.2.4 Nanotubes -- 6.2.5 Nanoscale transistors -- 6.2.6 Nanorobots -- 6.2.7 Nanotechnology and space -- 6.2.8 Nanotechnology in electronics: nanoelectronics -- 6.2.9 Nanotechnology in medicine -- 6.3 Electrochemical sensors -- 6.3.1 Carbonaceous materials-based electrochemical sensors -- 6.3.2 Metal-derived materials-based electrochemical sensors -- 6.3.3 Nanomaterials-based electrochemical sensors -- 6.4 Nanosensing technology -- 6.5 Challenges -- 6.6 Future perspective -- 6.7 Conclusion -- References -- 7 Sensing methodology -- 7.1 Introduction -- 7.1.1 Advancements in nanotechnology -- 7.1.2 Development of nanomaterials -- 7.1.3 2-Dimensional nanomaterials -- 7.2 Sensing methodology -- 7.2.1 Electrochemical biosensors -- 7.2.2 Electrochemical sensors -- 7.3 Nanomaterial-based electrochemical biosensors for biomedical applications -- 7.3.1 Types of nanotechnologies used in the medical field -- 7.3.1.1 Carbon nanotubes -- 7.3.1.2 Metal nanoparticles -- 7.3.1.3 Nanotubes -- 7.4 Nanomaterials-based electrochemical biosensors for tumor cell diagnosis -- 7.4.1 Nanoshells and quantum dots -- 7.4.2 Electrochemical biosensor in cancer cell detection -- 7.4.3 Electrochemical immunosensors in cancer cell detection -- 7.4.4 Electrochemical nucleic acid biosensors in cancer cell detection -- 7.5 Nanomaterial-based electrochemical sensors for environmental applications. , 7.5.1 Sensor applications for pollution detection and environmental contaminants -- 7.5.1.1 Emerging contaminants and toxic gases -- 7.5.1.2 Screen-printed electrodes -- 7.5.1.3 Nanowires -- 7.5.2 Electrochemical sensors for toxic gas detection -- 7.5.2.1 Components and working of electrochemical sensors -- 7.5.2.2 Configurations of electrochemical sensors -- 7.6 Conclusions -- Acknowledgements -- References -- 8 Fabrication of biosensors -- 8.1 Introduction to biosensors -- 8.2 Components of biosensors -- 8.3 Biosensor transducers -- 8.3.1 Optical biosensors -- 8.3.2 Piezoelectric biosensors -- 8.3.3 Calorimetric biosensors -- 8.4 Electrochemical biosensor -- 8.4.1 Potentiometric biosensors -- 8.4.2 Amperometric biosensors -- 8.5 Electrode fabrication technologies -- 8.5.1 Fabrication of nanomaterial-based biosensors -- 8.5.1.1 Coating-based methods -- 8.5.1.2 Deposition-based methods of biosensor fabrication -- 8.5.1.3 Printing-based methods -- 8.6 Direct growth -- 8.7 Self-powered implantable biosensor -- 8.7.1 Glucose detection -- 8.8 Conclusion and outlook -- References -- 9 Metal oxide and their sensing applications -- 9.1 Introduction -- 9.1.1 Metal-oxides-based chemical sensors -- 9.1.2 Metal oxides-based biosensors -- 9.2 Overview of metal oxides for different applications -- 9.2.1 ZnO-based sensors -- 9.2.2 Indium oxide-based sensors -- 9.2.3 Nickel oxide-based sensors -- 9.2.4 Titanium oxide-based sensors -- 9.2.5 Copper oxides-based sensors -- 9.2.6 Tin oxide-based sensors -- 9.2.7 Cerium oxide-based sensors -- 9.2.8 Iron oxide-based sensors -- 9.3 Different sensing techniques for sensing applications -- 9.3.1 Electrochemical sensing technique -- 9.3.1.1 Cyclic voltammetry -- 9.3.1.2 Linear sweep voltammetry -- 9.3.1.3 Amperometry -- 9.3.1.4 Electrochemical impedance spectroscopy -- 9.3.2 Colorimetric technique. , 9.3.3 Fluorescence technique -- 9.3.4 Quartz crystal microbalance technique -- 9.3.5 Surface-enhanced Raman scattering technique -- 9.3.5.1 Electromagnetic process -- 9.3.5.2 Chemical process -- 9.4 Electrochemical sensing based on metal oxides -- 9.5 Colorimetric and fluorometric sensing based on metal oxides -- 9.6 Fluorescent and chemiluminescent sensing based on metal oxides -- 9.7 Issues and drawbacks -- 9.8 Conclusion and Future prospective -- References -- 10 RFID sensors based on nanomaterials -- 10.1 Introduction -- 10.2 Nanomaterials for RFID sensors -- 10.3 Inkjet printing of nanomaterial-based RFID sensors -- 10.4 Applications of RFID nanosensors -- 10.4.1 Energy -- 10.4.2 Food industry -- 10.4.3 Biomedical applications -- 10.4.4 Structural health -- 10.5 Conclusion -- Acknowledgment -- References -- 11 Biological and biomedical applications of electrochemical sensors -- 11.1 Introduction -- 11.2 Components of electrochemical sensors -- 11.2.1 Hydrophobic membrane -- 11.2.2 Electrodes -- 11.2.3 Electrolyte -- 11.2.4 Filters -- 11.3 Working principle of electrochemical sensors -- 11.4 Fabrication of nanomaterial-based electrochemical sensor -- 11.4.1 Magnetic nanomaterials -- 11.4.2 Polymer -- 11.4.3 Metal oxide -- 11.4.4 Noble metals -- 11.4.4.1 Gold nanoparticles -- 11.4.4.2 Silver nanoparticles -- 11.4.5 Carbon nanotubes -- 11.4.5.1 Graphene -- 11.5 Biological and biomedical applications of electrochemical sensors -- 11.5.1 In Metabolite -- 11.5.1.1 Glucose -- 11.5.2 Body fluid ketones -- 11.5.3 Recognition of H2O2 from breast cancer cells -- 11.5.4 Quantitation of neurochemicals -- 11.5.5 Electrochemical detection of antibiotics in biological samples -- 11.5.6 Measurement of biomolecules -- 11.5.7 Electrochemical detection of nitrogen oxide in human beings -- 11.5.8 Electrochemical detection of nitrogen oxide in plants. , 11.5.9 Electrochemical sensors for detecting pathogens.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...