GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rockefeller University Press  (2)
Material
Publisher
  • Rockefeller University Press  (2)
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Rockefeller University Press ; 1991
    In:  The Journal of cell biology Vol. 114, No. 1 ( 1991-07-01), p. 125-141
    In: The Journal of cell biology, Rockefeller University Press, Vol. 114, No. 1 ( 1991-07-01), p. 125-141
    Abstract: To elucidate the nature of signals that control the level and spatial distribution of mRNAs encoding acetylcholine receptor (AChR), alpha-, beta-, gamma-, delta- and epsilon-subunits in muscle fibers chronic paralysis was induced in rat leg muscles either by surgical denervation or by different neurotoxins that cause disuse of the muscle or selectively block neuromuscular transmission pre- or postsynaptically and cause an increase of AChRs in muscle membrane. After paralysis, the levels and the spatial distributions of the different subunit-specific mRNAs change discoordinately and seem to follow one of three different patterns depending on the subunit mRNA examined. The level of epsilon-subunit mRNA and its accumulation at the end-plate are largely independent on the presence of the nerve or electrical muscle activity. In contrast, the gamma-subunit mRNA level is tightly coupled to innervation. It is undetectable or low in innervated normally active muscle and in innervated but disused muscle, whereas it is abundant along the whole fiber length in denervated muscle or in muscle in which the neuromuscular contact is intact but the release of transmitter is blocked. The alpha-, beta-, and delta-subunit mRNA levels show a different pattern. Highest amounts are always found at end-plate nuclei irrespective of whether the muscle is innervated, denervated, active, or inactive, whereas in extrasynaptic regions they are tightly controlled by innervation partially through electrical muscle activity. The changes in the levels and distribution of gamma- and epsilon-subunit-specific mRNAs in toxin-paralyzed muscle correlate well with the spatial appearance of functional fetal and adult AChR channel subtypes along the muscle fiber. The results suggest that the focal accumulation at the synaptic region of mRNAs encoding the alpha-, beta-, delta-, and epsilon-subunits, which constitute the adult type end-plate channel, is largely determined by at least two different neural factors that act on AChR subunit gene expression of subsynaptic nuclei.
    Type of Medium: Online Resource
    ISSN: 0021-9525 , 1540-8140
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 1991
    detail.hit.zdb_id: 1421310-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Rockefeller University Press ; 1995
    In:  The Journal of cell biology Vol. 130, No. 4 ( 1995-08-15), p. 949-957
    In: The Journal of cell biology, Rockefeller University Press, Vol. 130, No. 4 ( 1995-08-15), p. 949-957
    Abstract: The spatio-temporal expression patterns of mRNA transcripts coding for acetylcholine receptor (AChR) subunits and myogenic factors were measured in denervated rat soleus muscle and in soleus muscle chronically paralyzed for up to 12 d by conduction block of the sciatic nerve by tetrodotoxin (TTX). In denervated muscle the AChR alpha-, beta-, gamma-, and delta-subunit mRNAs were elevated with highest expression levels in the former synaptic and the perisynaptic region and with lower levels in the extrasynaptic fiber segments. In muscle paralyzed by nerve conduction block the alpha-, beta-, gamma-, and delta-subunit mRNA levels increased only in extrasynaptic fiber segments. Surprisingly, in the synaptic region the gamma-subunit mRNA that specifies the fetal-type AChR, and alpha-, beta-, delta-subunit mRNAs were not elevated. The expression of the gene encoding the epsilon-subunit, which specifies the adult-type AChR, was always restricted to synaptic nuclei. The mRNA for the regulatory factor myogenin showed after denervation similar changes as the subunit transcripts of the fetal AChR. When the muscle was paralyzed by nerve conduction block the increase of myogenin transcripts was also less pronounced in synaptic regions compared to extrasynaptic fiber segments. The results suggest that in normal soleus muscle a neurotrophic signal from the nerve locally down-regulates the expression of fetal-type AChR channel in the synaptic and perisynaptic muscle membrane by inhibiting the expression of the gamma-subunit gene and that inhibition of the myogenin gene expression may contribute to this down-regulation.
    Type of Medium: Online Resource
    ISSN: 0021-9525 , 1540-8140
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 1995
    detail.hit.zdb_id: 1421310-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...