GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Public Library of Science  (1)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28949, doi:10.1371/journal.pone.0028949.
    Description: Shotgun mass spectrometry was used to detect proteins in the harmful alga, Aureococcus anophagefferens, and monitor their relative abundance across nutrient replete (control), phosphate-deficient (−P) and −P refed with phosphate (P-refed) conditions. Spectral counting techniques identified differentially abundant proteins and demonstrated that under phosphate deficiency, A. anophagefferens increases proteins involved in both inorganic and organic phosphorus (P) scavenging, including a phosphate transporter, 5′-nucleotidase, and alkaline phosphatase. Additionally, an increase in abundance of a sulfolipid biosynthesis protein was detected in −P and P-refed conditions. Analysis of the polar membrane lipids showed that cellular concentrations of the sulfolipid sulphoquinovosyldiacylglycerol (SQDG) were nearly two-fold greater in the −P condition versus the control condition, while cellular phospholipids were approximately 8-fold less. Transcript and protein abundances were more tightly coupled for gene products involved in P metabolism compared to those involved in a range of other metabolic functions. Comparison of protein abundances between the −P and P-refed conditions identified differences in the timing of protein degradation and turnover. This suggests that culture studies examining nutrient starvation responses will be valuable in interpreting protein abundance patterns for cellular nutritional status and history in metaproteomic datasets.
    Description: Research for this work was supported by a National Oceanic and Atmospheric Administration ECOHAB grant (#NA09NOS4780206) and National Science Foundation grant (#OCE-0723667) and a STAR Research Assistance Agreement No. R-83041501-0 awarded by the U.S. Environmental Protection Agency. Further support came from the Woods Hole Coastal Ocean Institute. LLW was supported by a Environmental Protection Agency STAR Fellowship (#FP916901). EMB was supported by a National Science Foundation (NSF) Graduate Research Fellowship (#2007037200) and an Environmental Protection Agency STAR Fellowship (#F6E20324).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...