GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • PANGAEA  (2)
  • Public Library of Science  (2)
Publikationsart
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Bermúdez Monsalve, Rafael; Winder, Monika; Almén, Anna-Karin; Engström-Öst, Jonna; Riebesell, Ulf (2016): Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea. Biogeosciences, 13(24), 6625-6635, https://doi.org/10.5194/bg-13-6625-2016
    Publikationsdatum: 2023-05-12
    Beschreibung: Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which consequently affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high fluctuations in CO2 and pH. Here we investigate the response of a coastal brackish water plankton community to increasing CO2 levels as projected for the coming decades and the end of this century in terms of community and biochemical fatty acid (FA) composition. A Baltic Sea plankton community was enclosed in a set of off-shore mesocosms and subjected to a CO2 gradient ranging from natural concentrations (~347 µatm fCO2) up to values projected for the year 2100 (~1333 µatm fCO2). We show that the phytoplankton community composition was resilient to CO2 and did not diverge between the treatments. Seston FA composition was influenced by community composition, which in turn was driven by silicate and phosphate limitation in the mesocosms, and showed no difference between the CO2 treatments. These results suggest that CO2 effects are dampened in coastal communities that already experience high natural fluctuations in pCO2. Although this coastal plankton community was tolerant to high pCO2 levels, hypoxia and CO2 uptake by the sea can aggravate acidification and may lead to pH changes outside the currently experienced range for coastal organisms.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-03-15
    Schlagwort(e): Acartia bifilosa; Alkalinity, total; Aragonite saturation state; Baltic Sea; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Day of experiment; Entire community; Eurytemora affinis; Fatty acids; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Group; Hand-operated CTD (Sea&Sun Technology, CTD 60M); KOSMOS_2012_Tvaerminne; Laboratory experiment; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, inorganic, dissolved; Phytoplankton, biomass as carbon; Registration number of species; Salinity; Silicate; Species; Spectrophotometric; Temperate; Temperature, water; Type; Uniform resource locator/link to reference
    Materialart: Dataset
    Format: text/tab-separated-values, 19566 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-13
    Beschreibung: The unabated rise in anthropogenic CO2 emissions is predicted to strongly influence the ocean's environment, increasing the mean sea-surface temperature by 4°C and causing a pH decline of 0.3 units by the year 2100. These changes are likely to affect the nutritional value of marine food sources since temperature and CO2 can influence the fatty (FA) and amino acid (AA) composition of marine primary producers. Here, essential amino (EA) and polyunsaturated fatty (PUFA) acids are of particular importance due to their nutritional value to higher trophic levels. In order to determine the interactive effects of CO2 and temperature on the nutritional quality of a primary producer, we analyzed the relative PUFA and EA composition of the diatom Cylindrotheca fusiformis cultured under a factorial matrix of 2 temperatures (14 and 19°C) and 3 partial pressures of CO2 (180, 380, 750 μatm) for 〉250 generations. Our results show a decay of ∼3% and ∼6% in PUFA and EA content in algae kept at a pCO2 of 750 μatm (high) compared to the 380 μatm (intermediate) CO2 treatments at 14°C. Cultures kept at 19°C displayed a ∼3% lower PUFA content under high compared to intermediate pCO2, while EA did not show differences between treatments. Algae grown at a pCO2 of 180 μatm (low) had a lower PUFA and AA content in relation to those at intermediate and high CO2 levels at 14°C, but there were no differences in EA at 19°C for any CO2 treatment. This study is the first to report adverse effects of warming and acidification on the EA of a primary producer, and corroborates previous observations of negative effects of these stressors on PUFA. Considering that only ∼20% of essential biomolecules such as PUFA (and possibly EA) are incorporated into new biomass at the next trophic level, thepotential impacts of adverse effects of ocean warming and acidification at the base of the food web may be amplified towards higher trophic levels, which rely on them as source of essential biomolecules.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2018-12-11
    Beschreibung: Our present understanding of ocean acidification (OA) impacts on marine organisms caused by rapidly rising atmospheric carbon dioxide (CO2) concentration is almost entirely limited to single species responses. OA consequences for food web interactions are, however, still unknown. Indirect OA effects can be expected for consumers by changing the nutritional quality of their prey. We used a laboratory experiment to test potential OA effects on algal fatty acid (FA) composition and resulting copepod growth. We show that elevated CO2 significantly changed the FA concentration and composition of the diatom Thalassiosira pseudonana, which constrained growth and reproduction of the copepod Acartia tonsa. A significant decline in both total FAs (28.1 to 17.4 fg cell−1) and the ratio of long-chain polyunsaturated to saturated fatty acids (PUFA:SFA) of food algae cultured under elevated (750 µatm) compared to present day (380 µatm) pCO2 was directly translated to copepods. The proportion of total essential FAs declined almost tenfold in copepods and the contribution of saturated fatty acids (SFAs) tripled at high CO2. This rapid and reversible CO2-dependent shift in FA concentration and composition caused a decrease in both copepod somatic growth and egg production from 34 to 5 eggs female−1 day−1. Because the diatom-copepod link supports some of the most productive ecosystems in the world, our study demonstrates that OA can have far-reaching consequences for ocean food webs by changing the nutritional quality of essential macromolecules in primary producers that cascade up the food web.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...