GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (44)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 24 ( 2016-06-14), p. 6605-6610
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 24 ( 2016-06-14), p. 6605-6610
    Abstract: Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2η below the diffraction limit, where η is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 41 ( 2022-10-11)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 41 ( 2022-10-11)
    Abstract: Aneuploidy, the incorrect number of whole chromosomes, is a common feature of tumors that contributes to their initiation and evolution. Preventing aneuploidy requires properly functioning kinetochores, which are large protein complexes assembled on centromeric DNA that link mitotic chromosomes to dynamic spindle microtubules and facilitate chromosome segregation. The kinetochore leverages at least two mechanisms to prevent aneuploidy: error correction and the spindle assembly checkpoint (SAC). BubR1, a factor involved in both processes, was identified as a cancer dependency and therapeutic target in multiple tumor types; however, it remains unclear what specific oncogenic pressures drive this enhanced dependency on BubR1 and whether it arises from BubR1’s regulation of the SAC or error-correction pathways. Here, we use a genetically controlled transformation model and glioblastoma tumor isolates to show that constitutive signaling by RAS or MAPK is necessary for cancer-specific BubR1 vulnerability. The MAPK pathway enzymatically hyperstimulates a network of kinetochore kinases that compromises chromosome segregation, rendering cells more dependent on two BubR1 activities: counteracting excessive kinetochore–microtubule turnover for error correction and maintaining the SAC. This work expands our understanding of how chromosome segregation adapts to different cellular states and reveals an oncogenic trigger of a cancer-specific defect.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 51 ( 2014-12-23)
    Abstract: Osteosarcoma is the most common primary bone tumor, yet there have been no substantial advances in treatment or survival in three decades. We examined 59 tumor/normal pairs by whole-exome, whole-genome, and RNA-sequencing. Only the TP53 gene was mutated at significant frequency across all samples. The mean nonsilent somatic mutation rate was 1.2 mutations per megabase, and there was a median of 230 somatic rearrangements per tumor. Complex chains of rearrangements and localized hypermutation were detected in almost all cases. Given the intertumor heterogeneity, the extent of genomic instability, and the difficulty in acquiring a large sample size in a rare tumor, we used several methods to identify genomic events contributing to osteosarcoma survival. Pathway analysis, a heuristic analytic algorithm, a comparative oncology approach, and an shRNA screen converged on the phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway as a central vulnerability for therapeutic exploitation in osteosarcoma. Osteosarcoma cell lines are responsive to pharmacologic and genetic inhibition of the PI3K/mTOR pathway both in vitro and in vivo.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 52 ( 2007-12-26), p. 20896-20901
    Abstract: Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system unsurpassed for variability in disease outcome. A cohort of sporadic MS cases ( n = 163), taken from opposite extremes of the distribution of long-term outcome, was used to determine the role of the HLA-DRB1 locus on MS disease severity. Genotyping sets of benign and malignant MS patients showed that HLA-DRB1 * 01 was significantly underrepresented in malignant compared with benign cases. This allele appears to attenuate the progressive disability that characterizes MS in the long term. The observation was doubly replicated in ( i ) Sardinian benign and malignant patients and ( ii ) a cohort of affected sibling pairs discordant for HLA-DRB1 * 01 . Among the latter, mean disability progression indices were significantly lower in those carrying the HLA-DRB1 * 01 allele compared with their disease-concordant siblings who did not. The findings were additionally supported by similar transmission distortion of HLA-DRB1 * 04 subtypes closely related to HLA-DRB1 * 01. The protective effect of HLA-DRB1 * 01 in sibling pairs may result from a specific epistatic interaction with the susceptibility allele HLA-DRB1 * 1501 . A high-density ( 〉 700) SNP examination of the MHC region in the benign and malignant patients could not identify variants differing significantly between the two groups, suggesting that HLA-DRB1 may itself be the disease-modifying locus. We conclude that HLA-DRB1 * 01 , previously implicated in disease resistance, acts as an independent modifier of disease progression. These results closely link susceptibility to long-term outcome in MS, suggesting that shared quantitative MHC-based mechanisms are common to both, emphasizing the central role of this region in pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1993
    In:  Proceedings of the National Academy of Sciences Vol. 90, No. 20 ( 1993-10-15), p. 9528-9532
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 90, No. 20 ( 1993-10-15), p. 9528-9532
    Abstract: Herpes simplex virus type 1 infected cell polypeptide 4 (HSV-1 ICP4) is a multifunctional phosphoprotein that is essential for viral infection. It is both a repressor and an activator of viral gene expression depending upon the promoter. ICP4 represses transcription from its own promoter. In the present study, we used general transcription factors from HeLa cell nuclear extracts, recombinant TATA binding protein (TBP) and TFIIB, and the transcriptional activator Sp1 to reconstitute in vitro transcription for the ICP4 promoter and to examine the effects of purified ICP4 on transcription. ICP4 was able to effectively repress Sp1-induced transcription from ICP4 promoter templates that contain one or multiple Sp1 binding sites. The observed inhibition required the ICP4 binding site that spans the transcription initiation site. ICP4 did not inhibit basal transcription as inferred by its inability to inhibit transcription when (i) Sp1 was not included in transcription reactions, (ii) the templates contained no Sp1 binding sites, and (iii) TBP was used in place of TFIID in the reactions. The in vitro observations were consistent with the behavior of the same constructs expressed in cells from the herpes simplex virus type 1 genome. DNase I footprinting experiments revealed that ICP4 could co-occupy the ICP4 promoter region with TBP-TFIIB, indicating that ICP4 does not necessarily exclude these factors from binding to the TATA region. The data suggest that the repressive effects of ICP4 observed in this study result from ICP4 interfering with the interactions contributing to Sp1-induced transcription.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1993
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1992
    In:  Proceedings of the National Academy of Sciences Vol. 89, No. 13 ( 1992-07), p. 6119-6123
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 89, No. 13 ( 1992-07), p. 6119-6123
    Abstract: The observation that vitamin D-mediated enhancement of osteocalcin (OC) gene expression is dependent on and reciprocally related to the level of basal gene expression suggests that an interaction of the vitamin D responsive element (VDRE) with basal regulatory elements of the OC gene promoter contributes to both basal and vitamin D-enhanced transcription. Protein-DNA interactions at the VDRE of the rat OC gene (nucleotides -466 to -437) are reflected by direct sequence-specific and antibody-sensitive binding of the endogenous vitamin D receptor present in ROS 17/2.8 osteosarcoma nuclear protein extracts. In addition, a vitamin D-responsive increase in OC gene transcription is accompanied by enhanced non-vitamin D receptor-mediated protein-DNA interactions in the "TATA" box region (nucleotides -44 to +23), which also contains a potential glucocorticoid responsive element. Evidence for proximity of the VDRE with the basal regulatory elements is provided by two features of nuclear architecture. (i) Nuclear matrix attachment elements in the rat OC gene promoter that bind nuclear matrix proteins with sequence specificity may impose structural constraints on promoter conformation. (ii) Limited micrococcal nuclease digestion and Southern blot analysis indicate that three nucleosomes can be accommodated in the sequence spanning the OC gene VDRE, the OC/CCAAT box (nucleotides -99 to -76), and the TATA/glucocorticoid responsive element, and thereby the potential distance between the VDRE and the basal regulatory elements can be reduced. A model is presented for the contribution of both the VDRE and proximal promoter elements to the enhancement of OC gene transcription in response to vitamin D. The vitamin D receptor plus accessory proteins may function cooperatively with basal regulatory factors to modulate the extent to which the OC gene is transcribed.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1992
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2003
    In:  Proceedings of the National Academy of Sciences Vol. 100, No. 13 ( 2003-06-24), p. 7871-7876
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 100, No. 13 ( 2003-06-24), p. 7871-7876
    Abstract: Infection of susceptible cells by herpes simplex virus (HSV) can lead to productive infection or to latency, where the genomes persist in the nuclei of peripheral neurons in a quiescent state. Using the HSV strain d109, which does not express any viral genes and thus establishes a quiescent state in most cells, we observed that a fraction of genomes circularized upon infection. The expression of infected cell protein (ICP) 0, which is known to be involved in reactivation from latency and the promotion of productive infection, inhibited the formation of circular genomes. Circular genomes were not observed upon infection of fully permissive cells by wild-type virus, in either the presence or absence of viral DNA replication. However, productive infection in the absence of ICP0 resulted in the accumulation of a subpopulation of circular genomes. The proportion of circular genomes formed during infection with an ICP0 mutant was greater at low multiplicity of infection, a condition in which ICP0 mutants replicate poorly. In the complete absence of viral gene expression, it was found that only circular genomes persisted in cells. These results suggest that circularization of the HSV genome may not occur early in the productive phase of wild-type HSV infection, but rather during establishment of a quiescent state or latency, providing a possible strategy for long-term persistence. Additionally, the circularization and possible fate of HSV genomes are regulated by an activity of ICP0.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2003
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 18 ( 2009-05-05), p. 7542-7547
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 18 ( 2009-05-05), p. 7542-7547
    Abstract: Multiple sclerosis (MS), a common central nervous system inflammatory disease, has a major heritable component. Susceptibility is associated with the MHC class II region, especially HLA-DRB5*0101–HLA-DRB1*1501–HLA-DQA1*0102–HLA-DQB1*0602 haplotypes(hereafter DR2), which dominate genetic contribution to MS risk. Marked linkage disequilibrium (LD) among these loci makes identification of a specific locus difficult. The once-leading candidate, HLA-DRB1*15 , localizes to risk, neutral, and protective haplotypes. HLA-DRB1*15 and HLA-DQB1*0602 , nearly always located together on a small ancestral chromosome segment, are strongly MS-associated. One intervening allele on this haplotype, viz. HLA-DQA1*0102 , shows no primary MS association. Two Canadian cohorts ( n = 830 and n = 438 trios) genotyped for HLA-DRB1 , HLA-DQA1 and HLA-DQB1 alleles were tested for association using TDT. To evaluate epistasis involving HLA-DRB1*15 , transmissions from HLA-DRB1*15 -negative parents were stratified by the presence/absence of HLA-DRB1*15 in affected offspring. All 3 alleles contribute to MS susceptibility through novel epistatic interactions. HLA-DQA1*0102 increased disease risk when combined with HLA-DRB1*1501 in trans , thereby unambiguously implicating HLA-DQ in MS susceptibility. Three-locus haplotypes demonstrated that HLA-DRB1*1501 and HLA-DQB1*0602 each influence risk. Transmissions of rare morcellated DR2 haplotypes showed no interaction with HLA-DQA1*0102 . Incomplete haplotypes bearing only HLA-DRB1*1501 or HLA-DQB1*0602 did not predispose to MS. Balanced reciprocal transmission distortion can mask epistatic allelic association. These findings implicate epistasis among HLA class II alleles in human immune responses generally, provide partial explanation for intense linkage disequilibrium in the MHC, have relevance to animal models, and demonstrate key roles for DR2-specific interactions in MS susceptibility. MHC disease associations may be more generally haplotypic or diplotypic.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1993
    In:  Proceedings of the National Academy of Sciences Vol. 90, No. 22 ( 1993-11-15), p. 10778-10782
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 90, No. 22 ( 1993-11-15), p. 10778-10782
    Abstract: Murine fetal thymus lobes isolated from both normal and scid/scid mice can be colonized by donor cells from either human bone marrow or human umbilical cord blood in vitro. Subsequent organ culture results in a transient production of a few CD4+ CD8+ (double-positive) cells and then the accumulation of CD4+ or CD8+ (single-positive) T cells. A significant number of immature T-cell intermediates (e.g., CD8low, CD3-/low cells) were present in early organ cultures, suggesting that these were progenitors of the mature CD3+/high single-positive T cells that dominated late cultures. Depletion of mature T cells from the donor-cell populations did not affect their ability to colonize thymus lobes. However, colonization depended on the presence of CD7+ progenitor T cells. Limiting dilution experiments using mature T-cell populations (human peripheral blood leukocytes, human bone marrow cells, and human umbilical cord blood cells) suggested that thymic organ culture supports the growth of progenitor T cells but does not support the growth of mature human T cells. Each of these donor populations produced single-positive populations with different CD4/CD8 ratios, suggesting that precursor cells from different sources differ qualitatively in their capacity to differentiate into T cells.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1993
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...