GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    ELSEVIER SCI LTD
    In:  EPIC3Environmental Pollution, ELSEVIER SCI LTD, 269(116095), ISSN: 0269-7491
    Publikationsdatum: 2021-03-22
    Beschreibung: The occurrence of microplastics throughout marine environments worldwide, from pelagic to benthic habitats, has become serious cause for concern. Hadal zones were recently described as the “trash bins of the oceans” and ultimate sink for marine plastic debris. The Kuril region covers a substantial area of the North Pacific Ocean and is characterised by high biological productivity, intense marine traffic through the Kuril straits, and anthropogenic activity. Moreover, strong tidal currents and eddy activity, as well as the influence of Pacific currents, have the potential for long distance transport and retention of microplastics in this area. To verify the hypothesis that the underlying Kuril Kamchatka Trench might accumulate microplastics from the surrounding environments and act as the final sink for high quantities of microplastics, we analysed eight sediment samples collected in the Kuril Kamchatka Trench at a depth range of 5143–8250 m during the Kuril Kamchatka Biodiversity Studies II (KuramBio II) expedition in summer 2016. Microplastics were characterised via Micro Fourier Transform Infrared spectroscopy. All samples were analysed in their entirety to avoid inaccuracies due to extrapolations of microplastic concentrations and polymer diversities, which would otherwise be based on commonly applied representative aliquots. The number of microplastic particles detected ranged from 14 to 209 kg−1 sediment (dry weight) with a total of 15 different plastic polymers detected. Polypropylene accounted for the largest proportion (33.2%), followed by acrylates/polyurethane/varnish (19%) and oxidized polypropylene (17.4%). By comparing extrapolated sample aliquots with in toto results, it was shown that aliquot-based extrapolations lead to severe under- or overestimations of microplastic concentrations, and an underestimation of polymer diversity.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev , info:eu-repo/semantics/article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part II-Topical Studies in Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 108, pp. 51-59, ISSN: 0967-0645
    Publikationsdatum: 2014-11-04
    Beschreibung: In austral summer 2012, during the expedition ANT-XXVIII/3 on board RV Polarstern, two sites were sampled 1600 km apart in the South Polar Front area (52°S) at the boundary of different productivity regimes for meio- and macrobenthos using a multiple-corer and an epibenthic sledge, respectively. Patterns in density and abundance data were compared between different size classes of the benthos and interpreted in relation to surface primary productivity data and sediment oxygen consumption. We tested the hypothesis that long-term satellite-derived surface phytoplankton biomass, in situ real time biomass, and productivity measurements at the surface and throughout the euphotic zone are reflected in abyssal benthos densities, abundances and activity. Specifically, we investigated the effect of boundary conditions for lower and higher surface productivity. Surface and integrated to 100 m depth biomass and primary productivity measurements vary stations, with the lowest values at station 85 (0.083 mg Chl-a m−3 at surface, 9 mg Chl-a m−2 and 161 mg C m−2 d−1− integrated over the first 100 m depth), and the highest values at station 86 (2.231 mg Chl-a m−3 at surface, 180 mg Chl-a m−2 and 2587 mg C m−2 d−1 integrated over first 100 m depth). Total meiofaunal densities varied between 102 and 335 individuals/10 cm². Densities were the highest at station 86-30 (335 individuals) and lowest at station 81-13 (102 individuals). Total macrofaunal densities (individuals/1000 m²) varied between 26 individuals at station 81-17 and 194 individuals at station 86-24. However, three EBS hauls were taken at station 86 with a minimum of 80 and a maximum of 194 individuals. Sediment oxygen consumption did not vary significantly between stations from east to west. Bentho-pelagic coupling of meio- and macrobenthic communities could not be observed in the South Polar Front at the boundary conditions from low to high surface productivity between stations 81 and 86.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part I-Oceanographic Research Papers, PERGAMON-ELSEVIER SCIENCE LTD, 152(103102), ISSN: 0967-0637
    Publikationsdatum: 2019-12-05
    Beschreibung: This study compares the macrofaunal communities along two bathymetric transects (1000 – 2500 m water depth) in predominantly ice-covered western (offshore Greenland) and generally ice-free eastern (offshore Svalbard) regions of the Fram Strait. Material was collected using an USNEL 0.25 m2 box corer and all sediment samples were processed through a 500-μm sieve. A total of 1671 organisms from 169 species were found. Densities off Greenland were generally lower than those observed off Svalbard. On both sides of the Fram Strait, density, biomass and biodiversity generally decreased with increasing water depth. An exception was observed at the deepest station off Greenland (2500 m water depth), which was located within the Marginal Ice Zone. At this station, macrofaunal density was elevated (992 ± 281 ind. m−2) compared to the adjacent shallower sampling areas off Greenland (272 ± 208 ind. m−2 to 787 ± 172 ind. m−2) and the deeper stations (2000 and 2500 m water depth) off Svalbard (552 ± 155 ind. m−2 and 756 ± 182 ind. m−2). The most abundant species along both transects was the polychaete Galathowenia fragilis (off Greenland: 288 ind. m−2, off Svalbard: 740 ind. m−2). Sea ice coverage and water depth, as well as the associated food availability at the seafloor, seem to be crucial factors driving the macrofaunal community patterns. A strong pelago-benthic coupling is observed to be typical in Arctic deep-sea ecosystems, and is also confirmed by our study.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...