GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 122 (12). pp. 10427-10439.
    Publikationsdatum: 2020-02-06
    Beschreibung: Earthquake locations along the southern Mid-Atlantic Ridge have large uncertainties due to the sparse distribution of permanent seismological stations in and around the South Atlantic Ocean. Most of the earthquakes are associated with plate tectonic processes related to the formation of new oceanic lithosphere, as they are located close to the ridge axis or in the immediate vicinity of transform faults. A local seismological network of ocean-bottom seismometers and land stations on and around the archipelago of Tristan da Cunha, allowed for the first time a local earthquake survey for one year. We relate intra-plate seismicity within the African oceanic plate segment north of the island partly to extensional stresses induced by a bordering large transform fault and to the existence of the Tristan mantle plume. The temporal propagation of earthquakes within the segment reflects the prevailing stress field. The strong extensional stresses in addition with the plume weaken the lithosphere and might hint at an incipient ridge jump. An apparently aseismic zone coincides with the proposed location of the Tristan conduit in the upper mantle southwest of the islands. The margins of this zone describe the transition between the ductile and the surrounding brittle regime. Moreover, we observe seismicity close to the islands of Tristan da Cunha and nearby seamounts, which we relate to ongoing tectono-magmatic activity.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 20 . pp. 6033-6050.
    Publikationsdatum: 2022-01-31
    Beschreibung: Ultraslow spreading ridges are poorly understood plate boundaries consisting of magmatic and amagmatic segments that expose mostly mantle peridotite and only traces of basalt and gabbro. The slowest part of the global spreading system is represented by the eastern Gakkel Ridge in the Central Arctic Ocean, where crustal accretion is characterized by extreme focusing of melt to discrete magmatic centers. Close to its eastern tip lies the unusual 5,310 m deep Gakkel Rift Deep (GRD) with limited sediment infill, which is in strong contrast to the broader sediment‐filled rift valleys to the east and west. Here, we report an 40Ar/39Ar age of 3.65±0.01 Ma for a pillow basalt from a seamount located on the rim the GRD confirming ultraslow spreading rates of ~7 mm/yr close to the Laptev Sea as suggested from aeromagnetic data. Its geochemistry points to an alkaline lava, attributed to partial melting of a source that underwent prior geochemical enrichment. We note that the GRD extracts compositionally similar melts as the sparsely magmatic zone further west but at much slower spreading velocities of only ~6‐7 mm/yr, indicating the widespread occurrence of similarly fertile mantle in the High Arctic. This enriched source differs from sub‐continental lithospheric mantle that influences magmatism along the Western Volcanic Zone (Goldstein et al. 2008) and is similar to metasomatized mantle ‐ shown to influence melt genesis along the Eastern Volcanic Zone.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-03-09
    Beschreibung: Understanding the enigmatic intraplate volcanism in the Tristan da Cunha region requires knowledge of the temperature of the lithosphere and asthenosphere beneath it. We measured phase-velocity curves of Rayleigh waves using cross-correlation of teleseismic seismograms from an array of ocean-bottom seismometers around Tristan, constrained a region-average, shear-velocity structure, and inferred the temperature of the lithosphere and asthenosphere beneath the hotspot. The ocean-bottom data set presented some challenges, which required data-processing and measurement approaches different from those tuned for land-based arrays of stations. Having derived a robust, phase-velocity curve for the Tristan area, we inverted it for a shear wave velocity profile using a probabilistic (Markov chain Monte Carlo) approach. The model shows a pronounced low-velocity anomaly from 70 to at least 120 km depth. VS in the low velocity zone is 4.1-4.2 km/s, not as low as reported for Hawaii (∼4.0 km/s), which probably indicates a less pronounced thermal anomaly and, possibly, less partial melting. Petrological modeling shows that the seismic and bathymetry data are consistent with a moderately hot mantle (mantle potential temperature of 1,410-1,430°C, an excess of about 50-120°C compared to the global average) and a melt fraction smaller than 1%. Both purely seismic inversions and petrological modeling indicate a lithospheric thickness of 65-70 km, consistent with recent estimates from receiver functions. The presence of warmer-than-average asthenosphere beneath Tristan is consistent with a hot upwelling (plume) from the deep mantle. However, the excess temperature we determine is smaller than that reported for some other major hotspots, in particular Hawaii.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Quaternary Science Reviews, PERGAMON-ELSEVIER SCIENCE LTD, 160, pp. 45-56, ISSN: 0277-3791
    Publikationsdatum: 2017-06-01
    Beschreibung: About 16% of the Greenland Ice Sheet drains in the area of the Northeast Greenland shelf between 76°N and 80.5°N via marine terminating glaciers. Most of it is via the Northeast Greenland Ice Stream, the largest ice stream of Greenland. During ice ages, the ice sheet extended onto the continental shelf and modern-day cross-shelf troughs were filled by ice streams. In this study, high-resolution hydro-acoustic data acquired during three decades of research were jointly investigated to reveal the past glacial conditions. Our data shows that Westwind Trough and Norske Trough were filled by fast flowing ice streams that extended to the shelf edge during the last glacial maximum. In between the cross-shelf troughs, ice domes resided on shallow banks that may have contributed about a decimetre to global sea level. Most probably these ice domes initiated fast ice flow through sinks in the inter-trough area. In Westwind Trough, ice sheet retreat to the inner shelf after the last glacial maximum was intermittent. In contrast, in Norske Trough the ice sheet retreat appears relatively rapid with no evidences for phases of grounding line stabilization. Probably during the Younger Dryas, the ice sheet readvanced to a mid-shelf position in both troughs documented by grounding zone wedges. During this time, a thick ice shelf was present in Norske Trough releasing tabular icebergs. Ice sheet retreat from the mid-shelf to the coastline during Holocene deglaciation was rapid.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Journal of Geodynamics, PERGAMON-ELSEVIER SCIENCE LTD, 118, pp. 49-54, ISSN: 0264-3707
    Publikationsdatum: 2018-07-15
    Beschreibung: The Arctic Ocean region plays, and has played in the geological past, a key role for Earth’s climate and oceanic circulation and their evolution. Studying the Lomonosov Ridge, a narrow submarine continental ridge in the central Arctic Ocean, is essential to answer fundamental questions related to the complex tectonic evolution of the Arctic basins, the glacial history, and the details of known paleoceanographic changes in the Cenozoic. In this study, we present a new seismic dataset that provides insights into the sedimentary structures along the ridge, their possible origin, age and formation. We compare the structure and stratigraphy of the deeper parts of the ridge between 83°N and 84°30′N to its conjugate, the Severnaya Zemlya Archipelago at the Eurasia margin. We propose that some sediment sequences directly underlying the prominent HARS (High Amplitude Reflector Sequence) formed well before the ridge separated from the Barents and Kara shelves and represent a prolongation of the North Kara Terrane, most likely part of the Neoproterozoic Timanide orogen. Towards Siberia along the Lomonosov Ridge, we interpret the HARS to be underlain by Upper Proterozoic-Lower Paleozoic metasedimentary material that is correlated to metamorphic complexes exposed on Bol’shevik Island. Northward, this unit descends and gives way to a foreland sedimentary basin complex of presumed Ordovician/ Devonian age, which underwent strong deformation during the Triassic/Jurassic Novaya Zemlya orogeny. The transition zone between these units might mark a conjugate continuation of the Eurasian margin’s Bol’shevik- Thrust Zone. A prominent erosional unconformity is observed over these strongly deformed foreland basins of the Eurasian and Lomonosov Ridge margins, and is conceivably related to vertical tectonics during breakup or a later basin-wide erosional event.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part II-Topical Studies in Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, 161, pp. 5-15, ISSN: 0967-0645
    Publikationsdatum: 2019-05-05
    Beschreibung: The continental slope of Madagascar is underrepresented in the literature in comparison to other continental slopes worldwide. In particular, the submarine geomorphology of this zone has not been discussed in detail. During research cruise SO230 approximately 1900 km2 of high resolution multibeam bathymetric data were collected along the northwest continental slope of Madagascar. These data show four, previously unrecognised, submarine canyons extending to the toe of the continental slope in the eastern Mozambique Channel. Measured canyon thalweg lengths vary from 40 – 51 km and exhibit straight to sinuous paths. The thalweg profiles include concave, linear and slightly convex characteristics. Canyon relief decreases with depth downslope, while canyon width increases. The interfluves of the upper canyon reaches are dominated by large, square to rectangular, block-like features of 100 – 200 m vertical relief. These features decrease in prominence down slope. Canyons mark the coast-perpendicular flank of the blocks, while the coast-parallel block flanks are delineated by elongate valleys. The geomorphology of the canyons is best explained by varied stages (youthful to mature) of canyon evolution. The discovery of these canyons highlights the complexity of the Madagascan Continental slope, and the future potential for multidisciplinary research in this region.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Journal of African Earth Sciences, PERGAMON-ELSEVIER SCIENCE LTD, 168(103830), ISSN: 1464-343X
    Publikationsdatum: 2020-08-16
    Beschreibung: In this contribution, high resolution multibeam swath bathymetry and PARASOUND sediment echosounder data are used to describe a region within the distal part of the central Mozambique Channel. The study area marks a transition from abyssal plain to abyssal hill type morphology within the sediment-rich Mozambique Fan and associated with a zone of extension in response to East African Rift System kinematics. Hosted within the abyssal hill lies an east-west orientated, elongate (80 km × 11 km) depression (relief of ca.175 m). Multibeam bathymetry and PARASOUND data show that the region surrounding the depression is variable in geomorphology including rugged irregular seafloor and sediment waves. Low gradient, smooth sea floor dominates the abyssal plain which returns several, distinct, sub-parallel sub bottom echoes. The flanks of the abyssal hill are marked by seafloor undulations likely evidence of bottom-current controlled geomorphology, and mass wasting deposits. The floor of the depression is characterised by hyperbolic echoes commonly associated with very rugged seafloor and basement outcrop with little sediment cover. The present-day geomorphology of the study area is the product of deep-seated ocean circulation and soft sediment deformation superimposed upon the antecedent geological framework, influenced by present-day kinematics of the East African Rift System. Faulting associated with these kinematics is manifest at the seafloor as the elongate steep-flanked depression; the result of an extensional regime expressed across the Mozambique channel from south-southwest to north-northeast. This contribution highlights the local, marine, ramification of a continental-scale largely terrestrial tectonic regime.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Quaternary Science Reviews, PERGAMON-ELSEVIER SCIENCE LTD, 154, pp. 182-198, ISSN: 0277-3791
    Publikationsdatum: 2016-11-19
    Beschreibung: New swath-bathymetric data acquired in 2010 and 2015 indicate a variety of glacial landforms in cross-shelf troughs of the Melville Bay (northeast Baffin Bay). These landforms reveal that, at their maximum extent, ice streams in the troughs crossed the shelf all the way to the shelf edge. Moraines, grounding-zone wedges (GZWs) and subglacial till lobes on the continental shelf define a pattern of variable ice stream retreat in the individual troughs. On the outer shelf, in the northern cross-shelf trough, ice-stream retreat was slow compared to more episodic retreat in the central (at least one stabilization on the outer shelf) and southern cross-shelf trough (re-advances at the shelf edge and fast retreat thereafter). Large GZWs on the mid-to inner shelf of the troughs indicate periods of grounding-zone stabilization. According to glacial landforms, the final retreat across the inner shelf (before 8.41 ka BP) was episodic to slow. Furthermore, evidence has been found for localized ice domes with minor ice-streams on inter-trough banks. The glacial landforms in Melville Bay, thus, indicate the varying and discontinuous ice sheet retreat history across the Northwest Greenland continental shelf.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...