GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-24
    Description: This dataset contains a model simulation of the environmental conditions close to the sea-floor from January 1948-April 2015. The simulations relies on the coupled physcial-biogeochemical HYCOM-ECOSMO and has been forced by a Global High Resolution Climate Reconstruction (ECHAM6). The dataset is monthly, it consist of temperature, salinity, currents, oxygen, nitrate, phosphate and silicate all interpolated to 1 meter above the sea floor. Additionally the dataset contains gross primary and secondary production integrated over the water column.
    Keywords: Deep-sea Sponge Grounds Ecosystems of the North Atlantic; File content; File format; File name; File size; NorthAtlantic; SponGES; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 55 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geophysical Research Abstracts Vol. 20, EGU2018-7790, 2018
    In:  EPIC3EGU General Assembly 2018, Vienna, 2018-04-07-2018-04-13Geophysical Research Abstracts Vol. 20, EGU2018-7790, 2018
    Publication Date: 2018-05-25
    Description: Field data collected for the North Sea indicate a prominent seasonal variation in the vertical distribution of total organic carbon (TOC) and macrobenthic biomass in sediments. The vertical TOC profiles classify into three modes, with maximum at surface, middle and deep part of sediments, respectively. We here present a mechanistic model to quantify, for the first time, the dynamic interaction between sedimentary TOC and benthic fauna. The major model principles include that (i) the vertical distribution of macrobenthic biomass is a trade-off between nutritional benefit (quantity and quality of TOC) and the costs of burial (respiration) and mortality, and (ii) the vertical transport of TOC is in turn modulated by macrobenthos through bioturbation. A novelty of our model is that bioturbation is resolved dynamically depending on variation of local food resources and macrobenthic biomass. This allows capturing of the benthic response to both depositional and erosional conditions and improving estimates of the material exchange flux at the sediment-water interface. The coupling of the TOC-benthos model with 3D hydrodynamic-ecological simulations reveals that the three profile modes of sedimentary TOC (in both quantify and quality) can be explained as a combined response to pelagic conditions (shear stress and primary production) and the synergy between bioturbation, vertical redistribution of higher quality TOC and vertical positioning of benthic organisms. A model reconstruction of the benthic status in the North Sea from 1950s to 2010s indicates that despite a relatively stable pattern at decadal and regional scales, significant variations exist at smaller scales characterized by seasons and local areas. In addition, inter-annual and multi-year cycle-like variations are also prominent especially in coastal areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...