GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • PANGAEA  (19)
  • Elsevier  (2)
Publikationsart
Schlagwörter
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 47 (4). pp. 583-601.
    Publikationsdatum: 2020-08-05
    Beschreibung: We present barium data for sediment traps deployed in a northeast Atlantic margin environment (Bay of Biscay). Fluxes of excess barium were measured with the objective of calculating carbon export production rates from the surface mixed layer and thus contribute to the understanding of organic carbon transport in a margin environment. Therefore, it was necessary to properly understand the different processes that affected the barium fluxes in this margin environment. Seasonal variability of POC/Ba flux ratios and decrease of barium solubilisation in the trap cups with increasing depth in the water column probably indicate that the efficiency of barite formation in the organic micro-environment varies with season and that the process is relatively slow and not yet completed in the upper 600 m of water column. Thus barite presence in biogenic aggregates will significantly depend on water column transit time of these aggregates. Furthermore, it was observed that significant lateral input of excess-Ba can occur, probably associated with residual currents leaving the margin. This advected excess-Ba affected especially the recorded fluxes in the deeper traps (〉1000 m) of the outer slope region. We have attempted to correct for this advected excess-Ba component, using Th (reported by others for the same samples) as an indicator of enhanced lateral flux and assigning a characteristic Ba/Th ratio to advected material. Using transfer functions relating excess-Ba flux with export production characteristic of margin areas, observed Ba fluxes indicate an export production between 7 and 18 g C m−2 yr−1. Such values are 3–7 times lower than estimates based on N-nutrient uptake and nutrient mass balances, but larger and more realistic than is obtained when a transfer function characteristic of open ocean systems is applied. The discrepancy between export production estimates based on excess-Ba fluxes and nutrient uptake could be resolved if part of the carbon is exported as dissolved organic matter. Results suggest that margin systems function differently from open ocean systems, and therefore Ba-proxy rationales developed for open ocean sites might not be applicable in margin areas.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 46 . pp. 1999-2024.
    Publikationsdatum: 2016-10-20
    Beschreibung: Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Bathmann, Ulrich; Peinert, Rolf; Noji, Thomas T; von Bodungen, Bodo (1990): Pelagic origin and fate of sedimenting particles in the Norwegian Sea. Progress in Oceanography, 24(1-4), 117-125, https://doi.org/10.1016/0079-6611(90)90024-V
    Publikationsdatum: 2023-03-16
    Beschreibung: A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g/m**2/y, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10**3/m**2/d). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.
    Schlagwort(e): AWI_BioOce; Biological Oceanography @ AWI; DATE/TIME; Date/time end; Duration, number of days; Flux of total mass; Lithogenic, flux; Norwegian Sea; Sample code/label; Trap, sediment; TRAPS; VP-2_trap
    Materialart: Dataset
    Format: text/tab-separated-values, 55 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: von Bodungen, Bodo; Antia, Avan N; Bauerfeind, Eduard; Haupt, Olaf; Koeve, Wolfgang; Machado, E; Peeken, Ilka; Peinert, Rolf; Reitmeier, Sven; Thomsen, C; Voss, Maren; Wunsch, M; Zeller, Ute; Zeitzschel, Bernt (1995): Pelagic processes and vertical flux of particles: an overview of a long-term comparative study in the Norwegian Sea and Greenland Sea. Geologische Rundschau, 84(1), 11-27, https://doi.org/10.1007/BF00192239
    Publikationsdatum: 2023-05-12
    Beschreibung: Pelagic processes and their relation to vertical flux have been studied in the Norwegian and Greenland Seas since 1986. Results of long-term sediment trap deployments and adjoining process studies are presented, and the underlying methodological and conceptional background is discussed. Recent extension of these investigations at the Barents Sea continental slope are also presented. With similar conditions of input irradiation and nutrient conditions, the Norwegian and Greenland Seas exhibit comparable mean annual rates of new and total production. Major differences can be found between these regions, however, in the hydrographic conditions constraining primary production and in the composition and seasonal development of the plankton. This is reflected in differences in the temporal patterns of vertical particle flux in relation to new production in the euphotic zone, the composition of particles exported and in different processes leading to their modification in the mid-water layers. In the Norwegian Sea heavy grazing pressure during early spring retards the accumulation of phytoplankton stocks and thus a mass sedimentation of diatoms that is often associated with spring blooms. This, in conjunction with the further seasonal development of zooplankton populations, serves to delay the annual peak in sedimentation to summer or autumn. Carbonate sedimentation in the Norwegian Sea, however, is significantly higher than in the Greenland Sea, where physical factors exert a greater control on phytoplankton development and the sedimentation of opal is of greater importance. In addition to these comparative long-term studies a case study has been carried out at the continental slope of the Barents Sea, where an emphasis was laid on the influence of resuspension and across-slope lateral transport with an analysis of suspended and sedimented material.
    Schlagwort(e): Global Environmental Change: The Northern North Atlantic; Jan-Mayen Current; MOOR; Mooring; OG4; OG5; SFB313; SFB313Moorings; Silicon Cycling in the World Ocean; SINOPS
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-01-14
    Schlagwort(e): Chlorophyll a; CTD/Rosette; CTD-RO; DEPTH, water; Global Environmental Change: The Northern North Atlantic; Lofoten; Phosphate; PO04_65; SFB313
    Materialart: Dataset
    Format: text/tab-separated-values, 16 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2023-01-14
    Schlagwort(e): Chlorophyll a; CTD/Rosette; CTD-RO; DEPTH, water; Global Environmental Change: The Northern North Atlantic; Lofoten; Phosphate; PO04_70; SFB313
    Materialart: Dataset
    Format: text/tab-separated-values, 14 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2023-01-14
    Schlagwort(e): Chlorophyll a; CTD/Rosette; CTD-RO; DEPTH, water; Global Environmental Change: The Northern North Atlantic; Lofoten; Phosphate; PO04_72; SFB313
    Materialart: Dataset
    Format: text/tab-separated-values, 12 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Peinert, Rolf; Antia, Avan N; Bauerfeind, Eduard; von Bodungen, Bodo; Haupt, Olaf; Krumbholz, Marita; Peeken, Ilka; Ramseier, René O; Voss, Maren; Zeitzschel, Bernt (2001): Particle flux variability in the polar and Atlantic biogeochemical provinces of the Nordic Seas. In: Schäfer, W; Ritzrau, M; Schlüter & J. Thiede (eds.) The Northern North Atlantic: A Changing Environment, Springer Verlag, Berlin, 500 pp, 53-68, https://doi.org/10.1007/978-3-642-56876-3_4
    Publikationsdatum: 2023-01-13
    Beschreibung: A decade of particle flux measurements providse the basis for a comparison of the eastern and western province s of the Nordic Seas. Ice-related physical and biological seasonality as well as pelagic settings jointly control fluxes in the western Polar Province which receive s southward flowing water of Polar origin. Sediment trap data from this realm highlight a predominantly physical flux control which leads to exports of siliceous particle s within the biological marginal ice zone as a prominent contributor. In the northward flowing waters of the eastern Atlanti c Province, feeding strategies, life histories and the succession ofdominant mesozooplankters (copepods and pteropods) are central in controlling fluxes. Furthermore, more calcareous matter is exported here with a shift in flux seasonality towards summer I autumn. Dominant pelagic processes modeled numerically as to their impact on annual organic carbon exports for both provinces confirm that interannual flux variability is related to changes in the respecti ve control mechanisms. Annual organic carbon export s are strikingly similar in the Polar and Atlantic Province s (2.4 and 2.9 g/m**2/y at 500 m depth), despite major differences in flux control. The Polar and Atlantic Provinces, however, can be distinguished according to annual fluxes of opal (1.4 and 0.6 g/m**2/y) and carbonate (6.8 and 10.4 g/m**2/y). Interannual variability may blur this in single years. Thus, it is vital to use multi-annual data sets when including particle exports in general biogeochemical province descriptions. Vertical flux profiles (collections from 500 m, 1000 m in both provinces and 300-600 m above the seafloor deviate from the general vertical decline of fluxes due to particle degradation during sinking. At depths〉 1000 m secondary fluxes (laterally advectedlresuspended particles) are often juxtaposed to primary (pelagic) fluxes, a pattern which is most prominent in the Atlantic Province. Spatial variability within the Atlantic Province remains poorly understood, and the same holds true for interannual variability. No proxies are at hand for this province to quantitatively relate fluxes to physical or biological pelagic properties. For the seasonally ice-covered Polar Province a robust relationship exists between particle export and ambient ice-regime (Ramseier et al. this volume; Ramseier et al. 1999). Spatial flux patterns may be differentiated and interannual variability can be analyzed in this manner to impro ve our ability to couple pelagic export patterns with benthic and geochemical sedimentary processes in seasonally ice-covered seas.
    Schlagwort(e): Global Environmental Change: The Northern North Atlantic; SFB313
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2023-01-14
    Schlagwort(e): Atlantic_Province; Calcium carbonate; Calcium carbonate, flux; Carbon, organic, particulate; Carbon, organic, particulate, flux per year; DATE/TIME; Date/time end; DEPTH, water; Global Environmental Change: The Northern North Atlantic; Lithogenic, flux; Lithogenic material; Particulate silica, flux; SFB313; Silica, particulate; Total, flux per year; Trap, sediment; TRAPS
    Materialart: Dataset
    Format: text/tab-separated-values, 150 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2023-01-14
    Schlagwort(e): Calcium carbonate; Calcium carbonate, flux; Carbon, organic, particulate; Carbon, organic, particulate, flux per year; DATE/TIME; Date/time end; DEPTH, water; Global Environmental Change: The Northern North Atlantic; Lithogenic, flux; Lithogenic material; Particulate silica, flux; Polar_Province; SFB313; Silica, particulate; Total, flux per year; Trap, sediment; TRAPS
    Materialart: Dataset
    Format: text/tab-separated-values, 110 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...