GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Ocean Acidification. , ed. by Gattuso, J. P. and Hansson, L. Oxford University Press, Oxford, U.K, pp. 154-175.
    Publication Date: 2019-09-23
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Integrative and Comparative Biology, 47 (4). pp. 645-655.
    Publication Date: 2021-09-03
    Description: Mechanisms that affect thermal tolerance of ectothermic organisms have recently received much interest, mainly due to global warming and climate-change debates in both the public and in the scientific community. In physiological terms, thermal tolerance of several marine ectothermic taxa can be linked to oxygen availability, with capacity limitations in ventilatory and circulatory systems contributing to oxygen limitation at extreme temperatures. The present review briefly summarizes the processes that define thermal tolerance in a model cephalopod organism, the cuttlefish Sepia officinalis, with a focus on the contribution of the cephalopod oxygen-carrying blood pigment, hemocyanin. When acutely exposed to either extremely high or low temperatures, cuttlefish display a gradual transition to an anaerobic mode of energy production in key muscle tissues once critical temperatures (Tcrit) are reached. At high temperatures, stagnating metabolic rates and a developing hypoxemia can be correlated with a progressive failure of the circulatory system, well before Tcrit is reached. However, at low temperatures, declining metabolic rates cannot be related to ventilatory or circulatory failure. Rather, we propose a role for hemocyanin functional characteristics as a major limiting factor preventing proper tissue oxygenation. Using information on the oxygen binding characteristics of cephalopod hemocyanins, we argue that high oxygen affinities (= low P50 values), as found at low temperatures, allow efficient oxygen shuttling only at very low venous oxygen partial pressures. Low venous PO2s limit rates of oxygen diffusion into cells, thus eventually causing the observed transition to anaerobic metabolism. On the basis of existing blood physiological, molecular, and crystallographical data, the potential to resolve the role of hemocyanin isoforms in thermal adaptation by an integrated molecular physiological approach is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...