GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institut für Meereskunde
    Publication Date: 2022-05-19
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-06
    Description: In metazoans, replication-dependent histone mRNAs end in a stem-loop structure instead of the poly(A) tail characteristic of all other mature mRNAs. This specialized 3' end is bound by stem-loop binding protein (SLBP), a protein that participates in the nuclear export and translation of histone mRNAs. The translational activity of SLBP is mediated by interaction with SLIP1, a m iddle domain of i nitiation f actor 4G (MIF4G)-like protein that connects to translation initiation. We determined the 2.5 Å resolution crystal structure of zebrafish SLIP1 bound to the translation–activation domain of SLBP and identified the determinants of the recognition. We discovered a SLIP1-binding motif (SBM) in two additional proteins: the translation initiation factor eIF3g and the mRNA-export factor DBP5. We confirmed the binding of SLIP1 to DBP5 and eIF3g by pull-down assays and determined the 3.25 Å resolution structure of SLIP1 bound to the DBP5 SBM. The SBM-binding and homodimerization residues of SLIP1 are conserved in the MIF4G domain of CBP80/20-dependent translation initiation factor (CTIF). The results suggest how the SLIP1 homodimer or a SLIP1–CTIF heterodimer can function as platforms to bridge SLBP with SBM-containing proteins involved in different steps of mRNA metabolism.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-06-03
    Description: Instead of a classical s ingle- s tranded deoxyribonuleic acid (DNA)- b inding protein (SSB), some hyperthermophilic crenarchaea harbor a non-canonical SSB termed ThermoDBP. Two related but poorly characterized groups of proteins, which share the ThermoDBP N-terminal DNA-binding domain, have a broader phylogenetic distribution and co-exist with ThermoDBPs and/or other SSBs. We have investigated the nucleic acid binding properties and crystal structures of representatives of these groups of ThermoDBP- r elated p roteins (ThermoDBP-RPs) 1 and 2. ThermoDBP-RP 1 and 2 oligomerize by different mechanisms and only ThermoDBP-RP2 exhibits strong single-stranded DNA affinity in vitro . A crystal structure of ThermoDBP-RP2 in complex with DNA reveals how the NTD common to ThermoDBPs and ThermoDBP-RPs can contact the nucleic acid in a manner that allows a symmetric homotetrameric protein complex to bind single-stranded DNA molecules asymmetrically. While single-stranded DNA wraps around the surface or binds along channels of previously investigated SSBs, it traverses an internal, intersubunit tunnel system of a ThermoDBP-RP2 tetramer. Our results indicate that some archaea have acquired special SSBs for genome maintenance in particularly challenging environments.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...