GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 48 (2003), S. 0 
    ISSN: 1365-2427
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: SUMMARY 1. We studied the seasonal succession of phyto- and zooplankton and the potential impact of predation by salmonids on zooplankton population dynamics in a high-mountain Swiss lake.2. A comparison of patterns in the abundance, body length, fecundity and age structure in the Daphnia galeata population strongly suggests that trout predation had little impact on the population and was not the cause for a decline in summer.3. The dominance in the lake of adult trout that feed mainly on benthic prey may buffer the effect of predation on the larger zooplankton. Further, the relatively high amount of phytoplankton after spring thaw could be important for sustaining the Daphnia population under moderate fish predation.4. Partial correlation analyses proved circumstantial evidence for both exploitative and interference competition between some zooplankton taxa. D. galeata depressed performance of other plankton species through exploitative competition.5. Our study shows that the impact of fish on zooplankton in high-mountain lakes depends strongly on food web structure and trophic state of the lake. Where fish predation is weak, invertebrate predation combined with competition for food may be responsible for the dominance of large-bodied zooplankton species.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: Populations living in seasonal environments are exposed to systematic changes in physical conditions that restrict the growth and reproduction of many species to only a short time window of the annual cycle. Several studies have shown that climate changes over the latter part of the 20th century affected the phenology and population dynamics of single species. However, the key limitation to forecasting the effects of changing climate on ecosystems lies in understanding how it will affect interactions among species. We investigated the effects of climatic and biotic drivers on physical and biological lake processes, using a historical dataset of 40 years from Lake Washington, USA, and dynamic time-series models to explain changes in the phenological patterns among physical and biological components of pelagic ecosystems. Long-term climate warming and variability because of large-scale climatic patterns like Pacific decadal oscillation (PDO) and El Niño–southern oscillation (ENSO) extended the duration of the stratification period by 25 days over the last 40 years. This change was due mainly to earlier spring stratification (16 days) and less to later stratification termination in fall (9 days). The phytoplankton spring bloom advanced roughly in parallel to stratification onset and in 2002 it occurred about 19 days earlier than it did in 1962, indicating the tight connection of spring phytoplankton growth to turbulent conditions. In contrast, the timing of the clear-water phase showed high variability and was mainly driven by biotic factors. Among the zooplankton species, the timing of spring peaks in the rotifer Keratella advanced strongly, whereas Leptodiaptomus and Daphnia showed slight or no changes. These changes have generated a growing time lag between the spring phytoplankton peak and zooplankton peak, which can be especially critical for the cladoceran Daphnia. Water temperature, PDO, and food availability affected the timing of the spring peak in zooplankton. Overall, the impact of PDO on the phenological processes were stronger compared with ENSO. Our results highlight that climate affects physical and biological processes differently, which can interrupt energy flow among trophic levels, making ecosystem responses to climate change difficult to forecast.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Oxford Univ. Press
    In:  Journal of Plankton Research, 37 (2). pp. 293-305.
    Publikationsdatum: 2020-07-20
    Beschreibung: Aquatic ecosystems experience large natural variation in elemental composition of carbon (C), nitrogen (N) and phosphorus (P), which is further enhanced by human activities. Primary producers typically reflect the nutrient ratios of their resource, whose stoichiometric composition can vary widely in conformity to environmental conditions. In contrast, C to nutrient ratios in consumers are largely constrained within a narrow range, termed homeostasis. In comparison to crustacean zooplankton, less is known about the ability of protozoan grazers and rotifer species to maintain stoichiometric balance. In this study, we used laboratory experiments with a primary producer (Nannochloropsis sp.), three different species of protozoan grazers and one mesozooplankton species: two heterotrophic dinoflagellates (Gyrodinium dominans and Oxyrrhis marina), a ciliate (Euplotes sp.) and a rotifer (Brachionus plicatilis) to test the stoichiometric response to five nutrient treatments. We showed that the dependency of zooplankton C:N:P ratios on C: nutrient ratios of their food source varies among species. Similar to the photoautotroph, the two heterotrophic dinoflagellates weakly regulated their internal stoichiometry. In contrast, the strength of stoichiometric regulation increased to strict homeostasis in both the ciliate and the rotifer, similar to crustacean zooplankton. Our study further shows that ciliate and rotifer growth can be constrained by imbalanced resource supply. It also indicates that these key primary consumers have the potential to trophically upgrade poor stoichiometric autotrophic food quality for higher trophic levels.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Oxford Univ. Press
    In:  Journal of Plankton Research, 31 (11). pp. 1307-1320.
    Publikationsdatum: 2020-07-20
    Beschreibung: Dynamics of prokaryotic and eukaryotic picophytoplankton were investigated over a 2-year time period using flow cytometry and combined with an in situ experiment in Lake Tahoe, USA to better characterize to which extent environmental factors control these communities. Pronounced seasonal patterns and clear temporal and spatial partitioning were observed between picocyanobacteria and picoeukaryotes. Picocyanobacteria dominated in the nutrient deficient upper water column during the stratified season, while picoeukaryotes reached maximum abundance during isothermal conditions and maintained high numbers in deep-water layers during the stratified season. Picocyanobacteria were more sensitive to high solar and UV radiation compared with picoeukaryotes, which were not affected by high solar radiation and nutrient enrichment stimulated their growth. The opposing response of these two populations is consistent with their vertical distribution: picocyanobacteria dominate below the 30% isolume and above the nitrocline depth, whereas picoeukaryotes increase in the vicinity of the nitrocline and thus increased nutrient concentration. This spatial separation of picophytoplankton groups along environmental gradients in Lake Tahoe is consistent with other deep-oligotrophic lakes and the marine environment, suggesting that these marine and freshwater organisms have similar ecophysiological requirements. These results highlight that the smallest photosynthetic communities show taxon-specific responses to mixing and resource availability, which affect the structure and dynamics of picophytoplankton.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...