GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Newark :John Wiley & Sons, Incorporated,  (1)
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Chemistry, Inorganic. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (377 pages)
    Ausgabe: 1st ed.
    ISBN: 9783527609093
    DDC: 546
    Sprache: Englisch
    Anmerkung: Intro -- Inorganic Chemistry in Focus III -- Dedicated to Professor John D. Corbett on the occasion of his 80th birthday -- In Praise of Synthesis -- Contents -- Preface -- List of Contributors -- Biographical Sketches -- 1 Inter-electron Repulsion and Irregularities in the Chemistry of Transition Series -- 1.1 Introduction: Irregularities in Lanthanide Chemistry -- 1.2 A General Principle of Lanthanide Chemistry -- 1.3 Extensions of the First Part of the Principle -- 1.4 Extensions of the Second Part of the Principle -- 1.5 The Tetrad Effect -- 1.6 The Diad Effect -- References -- 2 Stereochemical Activity of Lone Pairs in Heavier Main-group Element Compounds -- 2.1 Introduction -- 2.2 When Does a Lone Pair of Electrons Become Stereochemically Active? - Observations -- 2.3 Theoretical Concepts -- 2.3.1 Molecular/Complex Compounds -- 2.3.2 Solid Materials -- 2.4 Conclusions -- Acknowledgments -- References -- 3 How Close to Close Packing? -- 3.1 Introduction -- 3.2 Essential Features of Close Packing -- 3.3 Parameter Definitions -- 3.4 Correlation Between D and N -- 3.5 Transformation of Close-packing Arrangements -- 3.6 Close-packing of Cations or of Anions? -- 3.7 What Determines the Structure? -- Appendix. ICSD Codes, D and N Parameters of the Structures Used -- References -- 4 Forty-five Years of Praseodymium Di-iodide, PrI(2) -- Foreword -- 4.1 Introduction -- 4.2 Phases and Structures in the System Praseodymium-Iodine -- 4.2.1 Synthesis Generalities -- 4.2.2 Structural Principles -- 4.3 PrI(2): Phases and Phase Analysis -- 4.4 Conclusions -- Acknowledgments -- References -- 5 Centered Zirconium Clusters: Mixed-halide Systems -- Foreword -- 5.1 The Basics of Zirconium Cluster Chemistry -- 5.2 Motivation -- 5.3 Mixed-Chloride-Iodide Zirconium Cluster Phases with a 6:12-Metal:Halide Ratio. , 5.4 Mixed Chloride-Iodide Zirconium Cluster Phases with a 6:13 Metal:Halide Ratio -- 5.5 Mixed Chloride-Iodide Zirconium Cluster Phases with a 6:14 Metal:Halide Ratio -- 5.6 Mixed Chloride-Iodide Zirconium Cluster Phases with a 6:15 Metal:Halide Ratio -- 5.7 Mixed Chloride-Iodide Zirconium Cluster Phases with a 6:18 Metal:Halide Ratio - Products from Solid-state Reactions -- 5.8 Outlook -- Acknowledgments -- References -- 6 Titanium Niobium Oxychlorides: Ligand Combination Strategy for the Preparation of Low-dimensional Metal Cluster Materials -- Abstract -- 6.1 Introduction -- 6.1.1 Cluster Connectivity and Framework Dimension -- 6.1.2 The Ligand Combination Approach to Creating Anisotropic Frameworks -- 6.2 Overview of the Chemistry of Niobium Chloride and Niobium Oxide Cluster Compounds -- 6.2.1 Synthesis and Chemical Properties -- 6.2.2 Electronic Structure, Redox and Magnetic Properties -- 6.3 Niobium Oxychloride Cluster Compounds -- 6.3.1 One-dimensional Cluster Frameworks -- 6.3.1.1 Frameworks Built from Clusters with Five Oxygen Ligands -- 6.3.1.2 Frameworks Built of Clusters with Six Oxygen Ligands -- 6.3.2 Two-dimensional Cluster Frameworks -- 6.3.2.1 2D Oxychloride Frameworks with a Honeycomb-like Structure -- 6.3.2.2 Pillared 2D Oxychloride Frameworks -- 6.3.2.3 2D Framework with Graphite-like Cluster Connectivity -- 6.4 Summary of Crystallographic Data on Titanium Niobium Oxychlorides -- 6.4.1 Effect of the Total Number of Ligands -- 6.4.2 Cluster Configuration -- 6.4.2.1 Relationships Between Ligand Arrangement and Direct Inter-cluster Linkages -- 6.4.2.2 Relationships Between the Ligand Arrangement and Inter-cluster Linkages via Counter-ions -- 6.4.3 Anion Segregation -- 6.4.4 Structure-determining Factors in the Absence of "Hard" Cations -- 6.5 Electronic Configuration of Niobium Oxychloride Clusters -- 6.6 Conclusion and Outlook. , References -- 7 Trinuclear Molybdenum and Tungsten Cluster Chalcogenides: From Solid State to Molecular Materials -- 7.1 Introduction -- 7.2 Synthesis and Structure of Molecular M(3)Q(4) and M(3)Q(7) Cluster Complexes -- 7.2.1 Solid-state Synthesis: Dimensional Reduction -- 7.2.2 Solution Routes: Excision -- 7.2.3 Ligand Exchange Reactions -- 7.2.3.1 M(3)Q(4) Cluster Complexes -- 7.2.3.2 M(3)Q(7) Cluster Complexes -- 7.3 Trinuclear Clusters as Building Units -- 7.3.1 Molecular Conductors Based on M(3)Q(7) Cluster Complexes -- 7.3.2 Formation of Supramolecular Adducts -- Acknowledgments -- References -- 8 Current State on (B,C,N) Compounds of Calcium and Lanthanum -- 8.1 Introduction -- 8.2 Problems and Pitfalls of some Calcium Compounds with (mixed) B,C,N Anions -- 8.2.1 Borides of Calcium and Lanthanum -- 8.2.2 The CaC(2) Problem and Ca(3)Cl(2)C(3) -- 8.2.3 Calcium Nitride and Calcium Carbodiimides -- 8.2.4 Calcium Nitridoborates -- 8.2.5 A Comparison of Ca(3)(BN(2))(2) and Sr(3)(BN(2))(2) Structures -- 8.3 Metal-nitridoborates -- 8.3.1 Electronic Considerations -- 8.4 Lanthanum Nitridoborates -- Compounds in Ca-B-N and La-B-N systems -- 8.4.1 Nitridoborate Ions -- 8.4.2 Structures of Lanthanum Nitridoborates -- 8.5 Outlook -- Acknowledgments -- References -- 9 Compositional, Structural and Bonding Variations in Ternary Phases of Lithium with Main-group and Late-transition Elements -- 9.1 Introduction -- 9.2 Tuning Structures and Properties in Lithium Binary and Ternary Systems -- 9.3 Clustering in Condensed Lithium Ternary Phases: A Way Towards Quasicrystals -- 9.4 Exploration of New Lithium Ternary Systems Containing Ag, Zn, Al, Si, Ge -- 9.4.1 Background -- 9.4.2 The System Li-Al-Ag -- 9.4.3 Compositional and Structural Variations in the System Li-Al-Si -- 9.4.4 The Tetragonal Compound Li(9)AlSi(3), a Good Anodic Material. , 9.5 The Intermetallic Li-Zn-Ge System, from Electron-poor to Electron-rich Phases -- 9.5.1 The Electron-poor Hexagonal Phase LiZnGe -- 9.5.2 The True Cubic Configuration of the Compound Li(2)ZnGe -- 9.5.3 The Li-rich Compound Li(8)Zn(2)Ge(3) with an Open-layered Anionic Framework -- 9.6 Concluding Remarks -- References -- 10 Polar Intermetallics and Zintl Phases along the Zintl Border -- 10.1 "First comes the synthesis ..." - J. D. Corbett -- 10.2 What are Intermetallics? -- 10.3 The Zintl-Klemm Concept -- 10.4 "Electron-poor" Polar Intermetallics -- 10.5 Intermetallic π-Systems -- 10.6 Some Final Remarks -- References -- 11 Rare-earth Zintl Phases: Novel Magnetic and Electronic Properties -- 11.1 Introduction -- 11.2 Structure -- 11.3 Resistivity -- 11.4 Magnetic Properties -- 11.5 Magnetoresistance -- 11.6 Summary -- Acknowledgments -- References -- 12 Understanding Structure-forming Factors and Theory-guided Exploration of Structure-Property Relationships in Intermetallics -- 12.1 Introduction -- 12.2 Mn(14)Al(56+x)Ge(3-x) (x=0.00, 0.32, 0.61) -- 12.3 La(5-x)Ca(x)Ge(4) (x=3.37, 3.66, 3.82) and Ce(5-x)Ca(x)Ge(4) (x=3.00, 3.20, 3.26) -- 12.4 Concluding Remarks -- Acknowledgments -- References -- 13 Ternary and Quaternary Niobium Arsenide Zintl Phases -- 13.1 Introduction -- 13.2 New Main-group Arsenides -- 13.3 Compounds Based on Isolated [NbAs(4)] Tetrahedral Centers -- 13.4 Compounds Based on Edge-sharing Dimers of [NbAs(4)] Tetrahedra -- References -- 14 The Building-block Approach to Understanding Main-group-metal Complex Structures - More than just "Attempting to Hew Blocks with a Razor" -- 14.1 Introduction -- 14.2 The Building-block Approach -- 14.2.1 Quaternary Rare-earth Metal Chalcophosphates -- 14.2.2 Quaternary Rare-earth Metal Chalcoarsenites and Antimonites -- 14.2.3 Quaternary Rare-earth Metal Chalcotrielates and Tetrelates. , 14.3 Summary -- References -- 15 Cation-deficient Quaternary Thiospinels -- 15.1 Introduction -- 15.2 Cu(5.5)Si(1.5)Fe(4)Sn(12)S(32) -- 15.3 Cu(5.47)Fe(2.9)Sn(13.1)S(32) -- 15.4 Cu(7.38)Mn(4)Sn(12)S(32) (1) and Cu(7.07)Ni(4)Sn(12)S(32) (2) -- 15.5 Conclusions -- References -- 16 A New Class of Hybrid Materials via Salt-inclusion Synthesis -- 16.1 Introduction -- 16.2 General Approach to Salt-inclusion Synthesis -- 16.3 Examples and Discussion -- 16.3.1 Zeolite-like Transition Metal Containing Porous Compounds -- 16.3.2 Non-centrosymmetric Solids (NCSs) -- 16.3.3 Solids Containing Periodic Arrays of Transition-metal Nanostructures -- 16.4 Final Remarks -- Acknowledgments -- References -- 17 Layered Perrhenate and Vanadate Hybrid Solids: On the Utility of Structural Relationships -- 17.1 Introduction -- 17.2 Heterometallic Perrhenates -- 17.2.1 Background: Molecular and Condensed Metal-perrhenates -- 17.2.2 Copper- and Silver-perrhenate Hybrids -- 17.2.3 Metal-coordinated Pillars in Perrhenate Hybrids -- 17.3 Heterometallic Vanadates -- 17.3.1 Background: Layered Vanadate Species -- 17.3.2 Layered Heterometallic Vanadates: Charge Density Matching -- 17.3.3 Heterometallic Reduced Layered Vanadates -- 17.4 Conclusions -- Acknowledgments -- References -- 18 Hydrogen Bonding in Metal Halides: Lattice Effects and Electronic Distortions -- 18.1 Introduction -- 18.2 A Hierarchy of Structure-directing Forces -- 18.3 Hydrogen Bond Influence on Melts and Crystallization -- 18.4 Electronic Implications of Hydrogen Bonding -- 18.5 Conclusions -- Acknowledgments -- References -- 19 Syntheses and Catalytic Properties of Titanium Nitride Nanoparticles -- 19.1 Introduction -- 19.2 Synthesis of TiN Nanoparticles -- 19.3 Titanium Nitride Nanoparticles in Hydrogen Storage Applications [12, 13] -- 19.4 Catalytic Properties of TiN Nanoparticles in Solution [33]. , 19.5 Catalytic Properties.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...