GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-13
    Description: Submarine massive sulfide deposits on slow-spreading ridges are larger and longer-lived than deposits at fast-spreading ridges 1,2 , likely due to more pronounced tectonic faulting creating stable preferential fluid pathways 3,4 . The TAG hydrothermal mound at 26°N on the Mid-Atlantic Ridge (MAR) is a typical example located on the hanging wall of a detachment fault 5-7 . It has formed through distinct phases of high-temperature fluid discharge lasting 10s to 100s of years throughout at least the last 50,000 years 8 and is one of the largest sulfide accumulations on the MAR. Yet, the mechanisms that control the episodic behavior, keep the fluid pathways intact, and sustain the observed high heat fluxes of up to 1800 MW 9 remain poorly understood. Previous concepts involved long-distance channelized high-temperature fluid upflow along the detachment 5,10 but that circulation mode is thermodynamically unfavorable 11 and incompatible with TAG's high discharge fluxes. Here, based on the joint interpretation of hydrothermal flow observations and 3-D flow modeling, we show that the TAG system can be explained by episodic magmatic intrusions into the footwall of a highly permeable detachment surface. These intrusions drive episodes of hydrothermal activity with sub-vertical discharge and recharge along the detachment. This revised flow regime reconciles problematic aspects of previously inferred circulation patterns and can be used as guidance to one critical combination of parameters that can generate substantive mineral systems.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Using offshore geodetic observations, we show that a segment of the North Anatolian Fault in the central Sea of Marmara is locked and therefore accumulating strain. The strain accumulation along this fault segment was previously extrapolated from onshore observations or inferred from the absence of seismicity, but both methods could not distinguish between fully locked or fully creeping fault behavior. A network of acoustic transponders measured crustal deformation with mm-precision on the seafloor for 2.5 years and did not detect any significant fault displacement. Absence of deformation together with sparse seismicity monitored by ocean bottom seismometers indicates complete fault locking to at least 3 km depth and presumably into the crystalline basement. The slip-deficit of at least 4m since the last known rupture in 1766 is equivalent to an earthquake of magnitude 7.1 to 7.4 in the Sea of Marmara offshore metropolitan Istanbul.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: The formation of the Antarctic Circumpolar Current (ACC) is critical for the evolution of the global climate, but the timing of its onset is not well constrained. Here, we present new seismic evidence of widespread Late Eocene to Oligocene marine diagenetic chert in sedimentary drift deposits east of New Zealand indicating prolonged periods of blooms of siliceous microorganisms starting ~36 million years ago (Ma). These major blooms reflect the initiation of the arrival and upwelling of northern-sourced, nutrient-rich deep equatorial Pacific waters at the high latitudes of the South Pacific. We show that this change in circulation was linked to the initiation of a proto-ACC, which occurred ~6 Ma earlier than the currently estimated onset of the ACC at 30 Ma. We propose that the associated increased primary productivity and carbon burial facilitated atmospheric carbon dioxide reduction contributing to the expansion of Antarctic Ice Sheet at the Eocene-Oligocene Transition.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Spreading processes associated with slow-spreading ridges are a complex interplay of volcanic accretion and tectonic dismemberment of the oceanic crust, resulting in an irregular seafloor morphology made up of blocks created by episodes of intense volcanic activity or tectonic deformation. These blocks undergo highly variable evolution, such as tilts or dissection by renewed tectonic extension, depending on their positions with respect to the spreading axis, core complexes, detachment or transform faults. Here, we use near-seafloor magnetic and bathymetric data and seismic profiles collected over the TAG Segment of the Mid-Atlantic Ridge to constrain the tectonic evolution of these blocks. Our study reveals that the presence and evolution of oceanic core complexes play a key role in triggering block movements. The deep subvertical detachment fault roots on the plate boundary, marked by a thermal anomaly and transient magma bodies. Thermal and magmatic variations control the structure and morphology of the seafloor above the subhorizontal detachment surface, occasionally leading to relocating the detachment.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...