GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-09-23
    Beschreibung: Hydrothermal flow at oceanic spreading centres accounts for about ten per cent of all heat flux in the oceans and controls the thermal structure of young oceanic plates. It also influences ocean and crustal chemistry, provides a basis for chemosynthetic ecosystems, and has formed massive sulphide ore deposits throughout Earth’s history. Despite this, how and under what conditions heat is extracted, in particular from the lower crust, remains largely unclear. Here we present high-resolution, whole-crust, two- and three-dimensional simulations of hydrothermal flow beneath fast-spreading ridges that predict the existence of two interacting flow components, controlled by different physical mechanisms, that merge above the melt lens to feed ridge-centred vent sites. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle–ductile transition. About 60 per cent of the discharging fluid mass is replenished on-axis by warm (up to 300 degrees Celsius) recharge flow surrounding the hot thermal plumes, and the remaining 40 per cent or so occurs as colder and broader recharge up to several kilometres away from the axis that feeds hot (500–700 degrees Celsius) deep-rooted off-axis flow towards the ridge. Despite its lower contribution to the total mass flux, this deep off-axis flow carries about 70 per cent of the thermal energy released at the ridge axis. This combination of two flow components explains the seismically determined thermal structure of the crust and reconciles previously incompatible models favouring either shallower on-axis or deeper off-axis hydrothermal circulation.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Nature Publishing Group
    In:  Nature Geoscience, 4 . pp. 393-397.
    Publikationsdatum: 2019-09-23
    Beschreibung: Lavas erupted within plate interiors above upwelling mantle plumes have chemical signatures that are distinct from midocean ridge lavas. When a plume interacts with a mid-ocean ridge, the compositions of both their lavas changes, but there is no consensus as to how this interaction occurs1–3. For the past 15 Myr, the Pacific–Antarctic mid-ocean ridge has been approaching the Foundation hotspot4 and erupted lavas have formed seamounts. Here we analyse the noble gas isotope and trace element signature of lava samples collected from the seamounts. We find that both intraplate and on-axis lavas have noble gas isotope signatures consistent with the contribution from a primitive plume source. In contrast, nearaxis lavas show no primitive noble gas isotope signatures, but are enriched in strontium and lead, indicative of subducted former oceanic lower crust melting within the plume source5–7. We propose that, in a near-ridge setting, primitive, plumesourced magmas formed deep in the plume are preferentially channelled to and erupted at the ridge-axis. The remaining residue continues to rise and melt, forming the near-axis seamounts. With the deep melts removed, the geochemical signature of subduction contained within the residue becomes apparent. Lavas with strontium and lead enrichments are found worldwide where plumes meet mid-ocean ridges6–8, suggesting that subducted lower crust is an important but previously unrecognised plume component.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Nature Publishing Group
    In:  Nature, 382 (6589). pp. 344-346.
    Publikationsdatum: 2017-02-27
    Beschreibung: The conventional model whereby plume volcanism forms linear age-progressive volcanic chains, with the youngest activity occurring nearest a spreading axis (at a 'hotspot'), has been challenged for the Easter seamount chain1–4. Whereas early work suggested the existence of a linear melting anomaly (a 'hotline')1,2, more recent studies3,4 have proposed a hotspot near Salas y Gomez island, connected with the Easter microplate spreading system by an ~800-km-long, volcanically active plume channel. Here we use geochemical, geological and geochronological data to argue that the hotspot lies close to Easter Island. Moreover, new isotopic data for lavas from the seamount chain provide evidence for bidirectional flow between the spreading axis and the plume, thus supporting geophysical and fluid-dynamical models of mantle flow in a plume/spreading axis system5–7. Material balance and flux considerations show the Easter plume to be weak and cool compared with those beneath larger features such as Iceland, Hawaii and the Galápagos islands.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...