GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-24
    Description: Transparent exopolymer particles (TEP) are a class of marine gel particles and important links between surface ocean biology and atmospheric processes. Derived from marine microorganisms, these particles can facilitate the biological pumping of carbon dioxide to the deep sea, or act as cloud condensation and ice nucleation particles in the atmosphere. Yet, environmental controls on TEP abundance in the ocean are poorly known. Here, we investigated some of these controls during the first multiyear time-series on TEP abundance for the Fram Strait, the Atlantic gateway to the Central Arctic Ocean. Data collected at the Long-Term Ecological Research observatory HAUSGARTEN during 2009 to 2014 indicate a strong biological control with highest abundance co-occurring with the prymnesiophyte Phaeocystis pouchetii. Higher occurrence of P. pouchetii in the Arctic Ocean has previously been related to northward advection of warmer Atlantic waters, which is expected to increase in the future. Our study highlights the role of plankton key species in driving climate relevant processes; thus, changes in plankton distribution need to be accounted for when estimating the ocean's biogeochemical response to global change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-19
    Description: Sea ice is an important transport vehicle for gaseous, dissolved and particulate matter in the Arctic Ocean. Due to the recently observed acceleration in sea ice drift, it has been assumed that more matter is advected by the Transpolar Drift from shallow shelf waters to the central Arctic Ocean and beyond. However, this study provides first evidence that intensified melt in the marginal zones of the Arctic Ocean interrupts the transarctic conveyor belt and has led to a reduction of the survival rates of sea ice exported from the shallow Siberian shelves (−15% per decade). As a consequence, less and less ice formed in shallow water areas (〈30 m) has reached Fram Strait (−17% per decade), and more ice and ice-rafted material is released in the northern Laptev Sea and central Arctic Ocean. Decreasing survival rates of first-year ice are visible all along the Russian shelves, but significant only in the Kara Sea, East Siberian Sea and western Laptev Sea. Identified changes affect biogeochemical fluxes and ecological processes in the central Arctic: A reduced long-range transport of sea ice alters transport and redistribution of climate relevant gases, and increases accumulation of sediments and contaminates in the central Arctic Ocean, with consequences for primary production, and the biodiversity of the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...