GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9780128219010
    DDC: 541.39
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave-assisted green synthesis of inorganic nanomaterials -- Description -- Key features -- 1. Introduction -- 2. Technical aspects of microwave technique -- 2.1. Principles and heating mechanism of microwave method -- 2.2. Green solvents for microwave reactions -- 2.3. Microwave versus conventional synthesis -- 2.4. Microwave instrumentation -- 2.5. Advantages and limitations -- 3. MW-assisted green synthesis of inorganic nanomaterials -- 3.1. Metallic nanostructured materials -- 3.2. Metal oxides nanostructured materials -- 3.3. Metal chalcogenides nanostructured materials -- 3.4. Quantum dot nanostructured materials -- 4. Conclusions and future aspects -- 4.1. Challenges and scope to further study -- References -- Chapter 2: Green synthesis of inorganic nanoparticles using microemulsion methods -- Description -- Key features -- 1. Introduction -- 2. Fundamental aspects of microemulsion synthesis -- 2.1. Microemulsion and types -- 2.2. Micelles, types, and formation mechanism -- 2.3. Hydrophilic-lipophilic balance number -- 2.4. Surfactants and types -- 2.5. Advantages and limitations of microemulsion synthesis of nanomaterials -- 3. Microemulsion-assisted green synthesis of inorganic nanostructured materials -- 3.1. General mechanism microemulsion method for nanomaterial synthesis -- 3.2. Preparation of metallic and bimetallic nanoparticles -- 3.3. Metal oxide synthesis by microemulsion -- 3.4. Synthesis of metal chalcogenide nanostructured materials -- 3.5. Synthesis of inorganic quantum dots -- 4. Conclusions, challenges, and scope to further study -- References -- Chapter 3: Synthesis of inorganic nanomaterials using microorganisms -- 1. Introduction. , 2. Green approach for synthesis of nanoparticles -- 3. General mechanisms of biosynthesis -- 4. Optimization of nanoparticles biosynthesis -- 4.1. Effect of the temperature -- 4.2. Effect of pH -- 4.3. Effect of metal precursor concentration -- 4.4. Effect of culture medium composition -- 4.5. Effect of biomass quantity and age -- 4.6. Synthesis time -- 5. Biosynthesis of metal oxide nanoparticles -- 5.1. Bacteria-mediated synthesis -- 5.2. Fungi-mediated synthesis -- 5.3. Yeast-mediated synthesis -- 5.4. Algae- and viruses-mediated synthesis -- 6. Biosynthesis of metal chalcogenide nanoparticles -- 7. Final considerations -- References -- Chapter 4: Challenge and perspectives for inorganic green synthesis pathways -- 1. Introduction -- 2. Synthesis methods -- 2.1. Physical synthesis -- 2.1.1. Advantages -- 2.1.2. Inconvenient -- 2.2. Chemical synthesis -- 2.2.1. Advantages -- 2.2.2. Inconvenient -- 2.3. Green synthesis of inorganic nanomaterials and application -- 3. Challenge and perspectives -- 4. Conclusion -- References -- Chapter 5: Synthesis of inorganic nanomaterials using carbohydrates -- 1. Introduction -- 1.1. Types of nanomaterials -- 1.2. Approaches for the synthesis of inorganic nanomaterials -- 1.3. Characterization of inorganic nanomaterials -- 1.4. What are carbohydrates? -- 1.4.1. Types of carbohydrates -- Monosaccharides -- Oligosaccharides -- Polysaccharides -- 2. Synthesis of inorganic nanomaterials using carbohydrates -- 2.1. Synthesis of metal nanomaterials using carbohydrates -- 2.2. Synthesis of metal oxide-based nanomaterials using carbohydrates -- 2.3. Synthesis of nanomaterials using polysaccharides extracted from fungi and plant -- 3. The advantages and disadvantages of inorganic nanomaterials -- 4. Conclusion and future scope -- References -- Chapter 6: Fundamentals for material and nanomaterial synthesis. , 1. Introduction -- 2. Fundamental synthesis for materials -- 2.1. Solid-state synthesis -- 2.2. Chemical vapor transport -- 2.3. Sol-gel process -- 2.4. Melt growth (MG) method -- 2.5. Chemical vapor deposition -- 2.6. Laser ablation methods -- 2.7. Sputtering method -- 2.8. Molecular beam epitaxy method -- 3. Fundamental synthesis for nanomaterials -- 3.1. Top-down and bottom-up approaches -- 3.1.1. Ball milling (BL) synthesis process -- 3.1.2. Electron beam lithography -- 3.1.3. Inert gas condensation synthesis method -- 3.1.4. Physical vapor deposition methods -- 3.1.5. Laser pyrolysis methods -- 3.2. Chemical synthesis methods -- 3.2.1. Sol-gel method -- 3.2.2. Chemical vapor deposition method -- 3.2.3. Hydrothermal synthesis -- 3.2.4. Polyol process -- 3.2.5. Microemulsion technique -- 3.2.6. Microwave-assisted (MA) synthesis -- 3.3. Bio-assisted (B-A) methods -- 4. Conclusion -- References -- Chapter 7: Bioinspired synthesis of inorganic nanomaterials -- 1. Introduction -- 1.1. Nanomaterials and current limitations -- 1.2. Bioinspired synthesis -- 2. General mechanism of interaction -- 3. Bioinspired synthesis of inorganic nanomaterials -- 3.1. Microorganisms-mediated synthesis -- 3.2. Plant-mediated synthesis -- 3.2.1. Root extract assisted synthesis -- 3.2.2. Leaves extract assisted synthesis -- 3.2.3. Shoot-mediated synthesis -- 3.3. Protein templated synthesis -- 3.4. DNA-templated synthesis -- 3.5. Butterfly wing scales-templated synthesis -- 4. Applications of bioinspired nanomaterials -- 5. Conclusions -- References -- Chapter 8: Polysaccharides for inorganic nanomaterials synthesis -- 1. Introduction -- 2. Polysaccharides -- 2.1. Types of polysaccharides -- 2.1.1. Cellulose -- 2.1.2. Starch -- 2.1.3. Chitin -- 2.1.4. Chitosan -- 2.1.5. Properties of polysaccharides for bioapplications -- 3. Nanomaterials -- 3.1. Types of nanomaterials. , 3.1.1. Organic nanomaterials -- Carbon nanotubes -- Graphene -- Fullerenes -- 3.1.2. Inorganic nanomaterials -- Magnetic nanoparticles -- Metal nanoparticles -- Metal oxide nanoparticles -- Luminescent inorganic nanoparticles -- 3.2. Health effects of nanomaterials -- 4. Polysaccharide-based nanomaterials -- 4.1. Cellulose nanomaterials -- 4.1.1. Preparation of cellulose nanomaterials -- 4.1.2. Structure of cellulose nanomaterials -- 4.2. Chitin nanomaterials -- 4.2.1. Preparation of chitin nanomaterials -- 4.2.2. Structure and properties of chitin nanomaterials -- 4.3. Starch nanomaterials -- 4.3.1. Preparation of starch nanomaterials -- 4.3.2. Structure and properties of starch nanomaterials -- 5. Preparation of polysaccharide-based inorganic nanomaterials -- 5.1. Bulk nanocomposites -- 5.2. Composite nanoparticles -- 6. Applications of polysaccharide-based inorganic nanomaterials -- 6.1. Biotechnological applications -- 6.1.1. Bioseparation -- 6.1.2. Biolabeling and biosensing -- 6.1.3. Antimicrobial applications -- 6.2. Biomedical applications -- 6.2.1. Drug delivery -- 6.2.2. Digital imaging -- 6.2.3. Cancer treatment -- 6.3. Agricultural applications -- 7. Characterization of polysaccharide-based nanomaterials -- 7.1. Spectroscopy -- 7.1.1. Infrared (IR) spectroscopy -- 7.1.2. Surface-enhanced Raman scattering (SERS) -- 7.1.3. UV-visible absorbance spectroscopy -- 7.2. Microscopy -- 7.2.1. Scanning electron microscopy (SEM) -- 7.2.2. Transmission electron microscopy (TEM) -- 7.3. X-ray methods -- 7.4. Thermal analysis -- 8. Future prospects -- 9. Concluding remarks -- References -- Chapter 9: Supercritical fluids for inorganic nanomaterials synthesis -- 1. Introduction -- 2. The supercritical fluid as a substitute technology -- 2.1. What is supercritical fluid? -- 2.2. Supercritical antisolvent precipitation. , 2.3. Supercritical-assisted atomization -- 2.4. Sol-gel drying method -- 3. Synthesis in supercritical fluids -- 3.1. Route of supercritical fluids containing nanomaterials synthesis -- 3.2. Sole supercritical fluid -- 3.3. Mixed supercritical fluid -- 4. Theory of the synthesis of supercritical fluids containing nanomaterials -- 4.1. Supercritical fluids working process -- 4.2. Origin of nanoparticles -- 4.3. The rapid expansion of supercritical solutions -- 5. Conclusion -- References -- Chapter 10: Green synthesized zinc oxide nanomaterials and its therapeutic applications -- 1. Introduction -- 2. Green synthesis -- 3. ZnO NPs characterization -- 4. ZnO NPs synthesis by plant extracts -- 5. ZnO NPs synthesis by bacteria and actinomycetes -- 6. ZnO NPs synthesis by algae -- 7. ZnO NPs synthesis by fungi -- 8. NPs synthesis by virus -- 9. ZnO NPs synthesis with alternative green sources -- 10. Therapeutic applications -- 11. Conclusions -- References -- Chapter 11: Sonochemical synthesis of inorganic nanomaterials -- 1. Background -- 2. Inorganic nanomaterials in sonochemical synthesis -- 3. Applications -- 4. Final comments -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Porous materials. ; Electronic books.
    Description / Table of Contents: Internationally assembled experts in the field describe developments and advances in synthesis, tuning parameters, and applications of porous polymers. Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9781000567168
    DDC: 547/.7
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Introduction to Porous Polymers -- 1.1 Introduction -- 1.2 Types of Porous Polymers -- 1.3 Synthetic Methods for Porous Polymer Network -- 1.4 Conclusion -- References -- Chapter 2: Hyper-crosslinked Polymers -- 2.1 Introduction -- 2.1.1 Overview -- 2.1.2 Porous Polymer -- 2.1.3 Crosslinking -- 2.2 Hyper-crosslinked Polymers -- 2.3 Synthesis Methods of HCPs -- 2.3.1 Post-crosslinking Polymer Precursors -- 2.3.2 Direct One-Step Polycondensation -- 2.3.3 Knitting Rigid Aromatic Building Blocks by External Crosslinkers -- 2.4 Structure and Morphology of HCPs -- 2.4.1 Nanoparticles -- 2.4.2 Hollow Capsules -- 2.4.3 2D Membranes -- 2.4.4 Monoliths -- 2.5 HCPs Properties -- 2.5.1 Polymer Surface -- 2.5.1.1 Hydrophilicity -- 2.5.1.2 Hydrophobicity -- 2.5.1.3 Amphiphilicity -- 2.5.2 Porosity and Surface Area -- 2.5.3 Swelling Behavior -- 2.5.4 Thermomechanical Properties -- 2.6 Functionalization of HCPs -- 2.7 Characterization of HCPs -- 2.7.1 Compositional and Structural Characterization -- 2.7.2 Morphological Characterization -- 2.7.3 Porosity and Surface Area Analysis -- 2.7.4 Other Analysis -- 2.8 Applications -- 2.8.1 Storage Capacity -- 2.8.1.1 Storage of Hydrogen -- 2.8.1.2 Storage of Methane -- 2.8.1.3 CO 2 Capture -- 2.8.2 Environmental Remediation -- 2.8.3 Heterogeneous Catalysis -- 2.8.4 Drug Delivery -- 2.8.5 Sensing -- 2.8.6 Other Applications -- 2.9 Conclusion -- References -- Chapter 3: Porous Ionic Polymers -- 3.1 Introduction: A Distinctive Feature of the Porous Structure of Ionic Polymers -- 3.2 Ionic Polymers in Dry State -- 3.3 Ionic Polymers in Swollen State: Hsu-Gierke Model -- 3.4 Modifications of Hsu-Gierke Model: Hydration of Ion Exchange Polymers. , 3.5 Methods for Research of Porous Structure of Ionic Polymers -- 3.5.1 Nitrogen Adsorption-Desorption -- 3.5.2 Mercury Intrusion -- 3.5.3 Adsorption-Desorption of Water Vapor -- 3.5.4 Differential Scanning Calorimetry -- 3.5.5 Standard Contact Porosimetry -- 3.6 Conclusions -- References -- Chapter 4: Analysis of Qualitative and Quantitative Criteria of Porous Plastics -- 4.1 Introduction -- 4.2 Sorting of Porous Polymers -- 4.2.1 Macroporous Polymers -- 4.2.2 Microporous Polymers -- 4.2.3 Mesoporous Polymers -- 4.3 Methodology -- 4.3.1 AHP Analysis -- 4.4 Conclusions -- References -- Chapter 5: Novel Research on Porous Polymers Using High Pressure Technology -- 5.1 Background -- 5.2 Porous Polymers Based on Natural Polysaccharides -- 5.3 Parameters Involved in the Porous Polymers Processing by High Pressure -- 5.4 Supercritical Fluid Drying for Porous Polymers Processing -- 5.5 Porous Polymers for Foaming and Scaffolds by Supercritical Technology -- 5.6 Supercritical CO 2 Impregnation in Porous Polymers for Food Packaging -- 5.7 Synthesis of Porous Polymers by Supercritical Emulsion Templating -- 5.8 Porous Polymers as Supports for Catalysts Materials by Supercritical Fluid -- 5.9 Porous Metal-Organic Frameworks Polymers by Supercritical Fluid Processing -- 5.10 Concluding Remarks -- Acknowledgments -- References -- Chapter 6: Porous Polymer for Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Stability and Functionalization of POPs -- 6.3 Strategies for Synthesizing POP Catalyst -- 6.3.1 Co-polymerization -- 6.3.1.1 Acidic and Basic Groups -- 6.3.1.2 Ionic Groups -- 6.3.1.3 Ligand Groups -- 6.3.1.4 Chiral Groups -- 6.3.1.5 Porphyrin Group -- 6.3.2 Self-polymerization -- 6.3.2.1 Organic Ligand Groups -- 6.3.2.2 Organocatalyst Groups -- 6.3.2.3 Ionic Groups -- 6.3.2.4 Chiral Ligand Groups -- 6.3.2.5 Porphyrin Groups. , 6.4 Applications of Various Porous Polymers -- 6.4.1 CO 2 Capture and Utilization -- 6.4.1.1 Ionic Liquid/Zn-PPh 3 Integrated POP -- 6.4.1.1.1 Mechanism of the Cycloaddition Reaction -- 6.4.1.2 Triphenylphosphine-based POP -- 6.4.2 Energy Storage -- 6.4.3 Heterogeneous Catalysis -- 6.4.3.1 Cu(II) Complex on Pyridine-based POP for Nitroarene Reduction -- 6.4.3.2 POP-supported Rhodium for Hydroformylation of Olefins -- 6.4.3.3 Ni(II)-metallated POP for Suzuki-Miyaura Crosscoupling Reaction -- 6.4.3.4 Ru-loaded POP for Decomposition of Formic Acid to H 2 -- 6.4.3.5 Porphyrin-based POP to Support Mn Heterogeneous Catalysts for Selective Oxidation of Alcohols -- 6.4.3.5.1 Mechanism of the Oxidation of Alcohols by TFP-DPMs -- 6.4.4 Photocatalysis -- 6.4.4.1 Conjugated Porous Polymer Based on Phenanthrene Units -- 6.4.4.2 (dipyrrin)(bipyridine)ruthenium(II) Visible Light Photocatalyst -- 6.4.4.3 Carbazole-based CMPs for C-3 Functionalization of Indoles -- 6.4.4.3.1 Mechanism of C-3 Formylation of N-methylindole by CMP-CSU6 Polymer Catalyst -- 6.4.4.3.2 The Mechanism for C-3 Thiocyanation of 1H-indole -- 6.4.5 Electrocatalysis -- 6.4.5.1 Redox-active N-containing CPP for Oxygen Reduction Reaction (ORR) -- References -- Chapter 7: Triazine Porous Frameworks -- 7.1 Introduction -- 7.2 Synthetic Procedures of CTFs and Their Structural Designs -- 7.2.1 Ionothermal Trimerization Strategy -- 7.2.2 High Temperature Phosphorus Pentoxide (P 2 O 5)-Catalyzed Method -- 7.2.3 Amidine-based Polycondensation Methods -- 7.2.4 Superacid Catalyzed Method -- 7.2.5 Friedel-Crafts Reaction Method -- 7.3 Applications of CTFs -- 7.3.1 Adsorption and Separation -- 7.3.1.1 CO 2 Capture and Separation -- 7.3.1.2 The Removal of Pollutants -- 7.3.2 Heterogeneous Catalysis -- 7.3.3 Applications for Energy Storage and Conversion -- 7.3.3.1 Metal-Ion Batteries -- 7.3.3.2 Supercapacitors. , 7.3.4 Electrocatalysis -- 7.3.5 Photocatalysis -- 7.3.6 Other Applications of CTFs -- References -- Chapter 8: Advanced Separation Applications of Porous Polymers -- 8.1 Introduction -- 8.2 Advanced Separation Applications -- 8.3 Separation through Adsorption -- 8.4 Water Treatment -- 8.5 Conclusion -- Abbreviations -- References -- Chapter 9: Porous Polymers for Membrane Applications -- 9.1 Introduction -- 9.2 Introduction to Synthesis of Porous Polymeric Particles -- 9.3 Preparation of Porous Polymeric Membrane -- 9.4 Morphology of Membrane and Its Parameters -- 9.5 Emerging Applications of Porous Polymer Membranes -- 9.6 Polysulfone and Polyvinylidene Fluoride Used as Porous Polymers for Membrane Application -- 9.6.1 Polysulfone Membranes -- 9.6.2 Polyvinylidene Fluoride Membranes -- 9.7 Use of Porous Polymeric Membranes for Sensing Application -- 9.8 Use of Porous Polymeric Electrolytic Membranes Application -- 9.9 Use of Porous Polymeric Membrane for Numerical Modeling and Optimization -- 9.10 Use of Porous Polymers for Biomedical Application -- 9.11 Use of Porous Polymeric Membrane in Tissue Engineering -- 9.12 Use of Porous Polymeric Membrane in Wastewater Treatment -- 9.13 Use of Porous Polymeric Membrane for Dye Rejection Application -- 9.14 Porous Polymeric Membrane Antifouling Application -- 9.15 Porous Polymeric Membrane Used for Fuel Cell Application -- 9.16 Conclusion -- References -- Chapter 10: Porous Polymers in Solar Cells -- 10.1 Introduction -- 10.1.1 Si-based Solar Cells -- 10.1.2 Thin-film Solar Cells -- 10.1.3 Organic Solar Cells -- 10.2 Porous Polymers in DSSCs -- 10.2.1 Porous Polymers in Electrodes -- 10.2.2 Porous Polymer as a Counter Electrode -- 10.2.3 Porous Polymers in TiO 2 Photoanode -- 10.2.4 Porous Polymers in Electrolyte -- 10.2.5 Porous Polymer as Energy Conversion Film. , 10.2.5.1 Polyvinylidene Fluoride-co-Hexafluoropropylene (PVDF-HFP) Membranes -- 10.2.5.2 Pyridine-based CMPs Aerogels (PCMPAs) -- 10.2.6 Porous Polymers in Coating of Solar Cell -- 10.2.7 Porous Polymers as Photocatalyst or Electrocatalyst -- 10.3 Perovskite Solar Cells -- 10.3.1 Porous Polymers in Electron Transport Layers -- 10.3.2 Porous Polymers in Hole Transport Layers -- 10.3.3 Porous Polymer as Energy Conversion Film -- 10.3.4 Porous Polymers as Interlayers -- 10.3.5 Porous Polymers in Morphology Regulations -- 10.4 Porous Polymers in Silicon Solar Cell -- 10.5 Miscellaneous -- 10.5.1 Porous Polymers in Solar Evaporators -- 10.5.2 Charge Separation Systems in Solar Cells -- 10.5.3 Porous Polymers in ZnO Photoanode -- 10.6 Conclusions -- References -- Chapter 11: Porous Polymers for Hydrogen Production -- 11.1 Introduction -- 11.1.1 Approaches Utilized for the Generation of Porous Polymers (PPs) -- 11.1.1.1 Infiltration -- 11.1.1.2 Layer-by-Layer Assembly (LbL) -- 11.1.1.3 Conventional Polymerization -- 11.1.1.4 Electrochemical Polymerization -- 11.1.1.5 Controlled/Living Polymerization (CLP) -- 11.1.1.6 Macromolecular Design -- 11.1.1.7 Self-assembly -- 11.1.1.8 Phase Separation -- 11.1.1.9 Solid and Liquid Templating -- 11.1.1.10 Foaming -- 11.2 Various Porous Polymers for H 2 Production -- 11.2.1 Photocatalysts Based on Conjugated Microporous Polymers -- 11.2.2 Conjugated Microporous Polymers -- 11.2.3 Porous Conjugated Polymer (PCP) -- 11.2.4 Membrane Reactor -- 11.2.5 Paper-Structured Catalyst with Porous Fiber-Network Microstructure -- 11.2.6 Porous Organic Polymers (POPs) -- 11.2.7 PEM Water Electrolysis -- 11.2.8 Microporous Inorganic Membranes -- 11.2.9 Hybrid Porous Solids for Hydrogen Evolution -- 11.3 Other Alternatives for Hydrogen Production -- 11.3.1 Metal-Organic Frameworks (MOFs) -- 11.3.2 Covalent Organic Frameworks. , 11.3.3 Photochemical Device.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Semiconductors-Optical properties. ; Electronic books.
    Description / Table of Contents: This comprehensive reference describes the classifications, optical properties and applications of semiconductors. Accomplished experts in the field share their knowledge and examine new developments. This is an invaluable resource for engineers, scientists, academics and Industry R&D teams working in applied physics.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781000598957
    DDC: 537.6/226
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Semiconductor Optical Fibers -- Chapter 2: Optical Properties of Semiconducting Materials for Solar Photocatalysis -- Chapter 3: Semiconductor Optical Memory Devices -- Chapter 4: Semiconductor Optical Utilization in Agriculture -- Chapter 5: Nonlinear Optical Properties of Semiconductors, Principles, and Applications -- Chapter 6: Semiconductor Photoresistors -- Chapter 7: Semiconductor Photovoltaic -- Chapter 8: Progress and Challenges of Semiconducting Materials for Solar Photocatalysis -- Chapter 9: Linear Optical Properties of Semiconductors: Principles and Applications -- Chapter 10: Computational Techniques on Optical Properties of Metal-Oxide Semiconductors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...