GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-01-17
    Description: The non-contact magnetostrictive sensor (MsS) has been widely used in the guided wave testing of pipes, cables, and so on. However, it has a disadvantage of low excitation efficiency. A new method for enhancing the excitation efficiency of the non-contact MsS for pipe inspection using guided waves, by adjusting the axial length of the excitation magnetic field, is proposed. A special transmitter structure, in which two copper rings are added beside the transmitter coil, is used to adjust the axial length at the expense of weakening the excitation magnetic field. An equivalent vibration model is presented to analyze the influence of the axial length variation. The final result is investigated by experiments. Results show that the excitation efficiency of the non-contact MsS is enhanced in the whole inspection frequency range of the L(0,2) mode if the axial length is adjusted to a certain value. Moreover that certain axial length is the same for pipes of different sizes but made of the same material.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-09
    Description: Precise Point Positioning (PPP) makes use of the undifferenced pseudorange and carrier phase measurements with ionospheric-free (IF) combinations to achieve centimeter-level positioning accuracy. Conventionally, the IF ambiguities are estimated as float values. To improve the PPP positioning accuracy and shorten the convergence time, the integer phase clock model with between-satellites single-difference (BSSD) operation is used to recover the integer property. However, the continuity and availability of stand-alone PPP is largely restricted by the observation environment. The positioning performance will be significantly degraded when GPS operates under challenging environments, if less than five satellites are present. A commonly used approach is integrating a low cost inertial sensor to improve the positioning performance and robustness. In this study, a tightly coupled (TC) algorithm is implemented by integrating PPP with inertial navigation system (INS) using an Extended Kalman filter (EKF). The navigation states, inertial sensor errors and GPS error states are estimated together. The troposphere constrained approach, which utilizes external tropospheric delay as virtual observation, is applied to further improve the ambiguity-fixed height positioning accuracy, and an improved adaptive filtering strategy is implemented to improve the covariance modelling considering the realistic noise effect. A field vehicular test with a geodetic GPS receiver and a low cost inertial sensor was conducted to validate the improvement on positioning performance with the proposed approach. The results show that the positioning accuracy has been improved with inertial aiding. Centimeter-level positioning accuracy is achievable during the test, and the PPP/INS TC integration achieves a fast re-convergence after signal outages. For troposphere constrained solutions, a significant improvement for the height component has been obtained. The overall positioning accuracies of the height component are improved by 30.36%, 16.95% and 24.07% for three different convergence times, i.e., 60, 50 and 30 min, respectively. It shows that the ambiguity-fixed horizontal positioning accuracy has been significantly improved. When compared with the conventional PPP solution, it can be seen that position accuracies are improved by 19.51%, 61.11% and 23.53% for the north, east and height components, respectively, after one hour convergence through the troposphere constraint fixed PPP/INS with adaptive covariance model.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-09
    Description: Energies, Vol. 11, Pages 586: Using SoC Online Correction Method Based on Parameter Identification to Optimize the Operation Range of NI-MH Battery for Electric Boat Energies doi: 10.3390/en11030586 Authors: Bumin Meng Yaonan Wang Jianxu Mao Jianwen Liu Guochang Xu Jian Dai This paper discusses a design of a Battery Management System (BMS) solution for extending the life of Nickel-Metal Hydride (NI-MH) battery. Combined with application of electric boat, a State of Charge (SoC) optimal operation range control method based on high precision energy metering and online SoC correction is proposed. Firstly, a power metering scheme is introduced to reduce the original energy measurement error. Secondly, by establishing a model based parameter identification method and combining with Extended Kalman Filter (EKF) method, the estimation accuracy of SoC is guaranteed. Finally, SoC optimal operation range control method is presented to make battery running in the optimal range. After two years of operation, the battery managed by proposed method has much better status, compared to batteries that use AH integral method and fixed SoC operating range. Considering the SoC estimation of NI-MH battery is more difficult becausing special electrical characteristics, proposed method also would have a very good reference value for other types of battery management.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-09
    Description: Energies, Vol. 11, Pages 1790: Infeasibility Analysis of Half-Wavelength Transmission Systems Energies doi: 10.3390/en11071790 Authors: Zheng Xu Jian Yang Nengjin Sheng This paper analyzes the infeasibility of half-wavelength transmission systems in the aspects of power-frequency overvoltage and synchronization stability. The circuit model of the long-distance transmission system is established at first for steady-state and transient analysis. The sending-end system and the receiving-end system are both considered in the model. A test system based on an actual transmission line is given to facilitate the description of system characteristics. Based on the circuit model, the resonant transmission distance of the system is found and calculated. Theoretical analysis and numerical calculations are carried out to determine the feasibility transmission distance. It is demonstrated that the transmission distance should be in a certain range, which is larger than the resonant transmission distance, to satisfy the steady-state overvoltage and the small signal synchronization stability as well as the frequency deviation constraints. For transmission distances in the feasible range, the three-phase short circuit fault at a certain point of the transmission line will cause the most serious transient power-frequency overvoltage, and the system is very likely to lose synchronization stability. Considering the transient power-frequency overvoltage and the transient synchronization stability, the half-wavelength transmission system is technically impossible to operate.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-23
    Description: Sensors, Vol. 18, Pages 2761: A Novel Coordinated Motion Fusion-Based Walking-Aid Robot System Sensors doi: 10.3390/s18092761 Authors: Wenxia Xu Jian Huang Lei Cheng Human locomotion is a coordinated motion between the upper and lower limbs, which should be considered in terms of both the user’s normal walking state and abnormal walking state for a walking-aid robot system. Therefore, a novel coordinated motion fusion-based walking-aid robot system was proposed. To develop the accurate human motion intention (HMI) of such robots when the user is in normal walking state, force-sensing resistor (FSR) sensors and a laser range finder (LRF) are used to detect the two HMIs expressed by the user’s upper and lower limbs. Then, a fuzzy logic control (FLC)-Kalman filter (LF)-based coordinated motion fusion algorithm is proposed to synthesize these two segmental HMIs to obtain an accurate HMI. A support vector machine (SVM)-based fall detection algorithm is used to detect whether the user is going to fall and to distinguish the user’s falling mode when he/she is in an abnormal walking state. The experimental results verify the effectiveness of the proposed algorithms.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-06-08
    Description: A simple two-step method was employed for preparing nano-sized gold nanoparticles-graphene composite to construct a GNPs-GR-SDS modified electrode. Hemoglobin (Hb) was successfully immobilized on the surface of a basal plane graphite (BPG) electrode through a simple dropping technique. Direct electrochemistry and electrocatalysis of the hemoglobin-modified electrode was investigated. The as-prepared composites showed an obvious promotion of the direct electro-transfer between hemoglobin and the electrode. A couple of well-defined and quasi-reversible Hb CV peaks can be observed in a phosphate buffer solution (pH 7.0). The separation of anodic and cathodic peak potentials is 81 mV, indicating a fast electron transfer reaction. The experimental results also clarified that the immobilized Hb retained its biological activity for the catalysis toward NO. The biosensor showed high sensitivity and fast response upon the addition of NO, under the conditions of pH 7.0, potential ‒0.82 V. The time to reach the stable-state current was less than 3 s, and the linear response range of NO was 0.72–7.92 μM, with a correlation coefficient of 0.9991.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-06
    Description: This paper focuses on suppressing spectral overlap for sub-band spectral estimation, with which we can greatly decrease the computational complexity of existing spectral estimation algorithms, such as nonlinear least squares spectral analysis and non-quadratic regularized sparse representation. Firstly, our study shows that the nominal ability of the high-order analysis filter to suppress spectral overlap is greatly weakened when filtering a finite-length sequence, because many meaningless zeros are used as samples in convolution operations. Next, an extrapolation-based filtering strategy is proposed to produce a series of estimates as the substitutions of the zeros and to recover the suppression ability. Meanwhile, a steady-state Kalman predictor is applied to perform a linearly-optimal extrapolation. Finally, several typical methods for spectral analysis are applied to demonstrate the effectiveness of the proposed strategy.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-03
    Description: Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannian manifold, and hence, normal sparse representation classification cannot be applied to polarimetric SAR directly. This paper proposes a new land cover classification approach for polarimetric SAR. There are two principal novelties in this paper. First, a Stein kernel on a Riemannian manifold instead of Euclidean metrics, combined with sparse representation, is employed for polarimetric SAR land cover classification. This approach is named Stein-sparse representation-based classification (SRC). Second, using simultaneous sparse representation and reasonable assumptions of the correlation of representation among different frequency bands, Stein-SRC is generalized to simultaneous Stein-SRC for multi-frequency polarimetric SAR classification. These classifiers are assessed using polarimetric SAR images from the Airborne Synthetic Aperture Radar (AIRSAR) sensor of the Jet Propulsion Laboratory (JPL) and the Electromagnetics Institute Synthetic Aperture Radar (EMISAR) sensor of the Technical University of Denmark (DTU). Experiments on single-band and multi-band data both show that these approaches acquire more accurate classification results in comparison to many conventional and advanced classifiers.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-19
    Description: This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA). After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-03
    Description: Human papillomavirus (HPV) are firmly established as the principal causative agent for cervical carcinoma. Current vaccines may provide some protection for women from cervical carcinoma linked to HPV genotype 16 and 18. This may be the best vaccine for Western women, but the geographical variation in HPV distributions may not make it the most appropriate vaccine for China or Asia. This study provided an observational, retrospective, hospital-based cross-sectional study on the distribution of HPV genotypes among 5410 women with invasive cervical cancer (ICC) or cervical intraepithelial neoplasia (CIN). Overall, the positive rates of the four HPV types included in current prophylactic vaccines were counted, the two high-risk types (HPV-16 and -18) covered by current vaccines represented 66.9% of women with squamous cancer, 55.0% with adenocarcinoma, 64.9% with adenosquamous carcinoma and 77.4% of other type ICC, as well as 59.5% of CIN III, 45.0% of CIN II and 38.1% of CIN I cases. As expected, two low-risk types (HPV-6 and -11) included in the quadrivalent vaccine did not show good coverage data. Particularly worth mentioning is the fact that the addition of HPV-52 and -58 to the vaccine cocktail would increase cancer protection in our population, potentially preventing up to beyond 16% of squamous/adenosquamous carcinoma and other type of cervical cancers, and 7.75% of adenocarcinomas. It might also potentially reduce the rate of CIN III by a further 28.6% and CIN II and I by a third. This study established the baseline for surveillance in Zhejiang Province, and provides data for further vaccine designs: a quadrivalent HPV vaccine covering HPV-16/-58/-18/-52, would be more welcome in our region in the forthcoming year compared to the currently available vaccine.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...