GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-08
    Description: The present study focuses the development and the evaluation of humidity sensors based on reduced graphene oxide—tin oxide (rGO-SnO2) nanocomposites, synthesized by a simple redox reaction between GO and SnCl2. The physico-chemical characteristics of the nanocomposites were analyzed by XRD, TEM, FTIR, and Raman spectroscopy. The formation of SnO2 crystal phase was observed through XRD. The SnO2 crystal phase anchoring to the graphene sheet was confirmed through TEM images. For the preparation of the sensors, tantalum substrates were coated with the sensing material. The sensitivity of the fabricated sensor was studied by varying the relative humidity (RH) from 11% to 95% over a period of 30 days. The dependence of the impedance and of the capacitance with RH of the sensor was measured with varying frequency ranging from 1 kHz to 100 Hz. The long-term stability of the sensor was measured at 95% RH over a period of 30 days. The results proved that rGO-SnO2 nanocomposites are an ideal conducting material for humidity sensors due to their high sensitivity, rapid response and recovery times, as well as their good long-term stability.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...