GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI Publishing  (6)
  • The American Society for Biochemistry and Molecular Biology (ASBMB)  (4)
  • 1
    Publication Date: 2016-05-28
    Description: The μO-conotoxins MrVIA, MrVIB, and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well described target for the treatment of pain; however, little is known about the residues or structural elements that define this activity. In this study, we determined the three-dimensional structure of MfVIA, examined its membrane binding properties, performed alanine-scanning mutagenesis, and identified residues important for its activity at human NaV1.8. A second round of mutations resulted in (E5K,E8K)MfVIA, a double mutant with greater positive surface charge and greater affinity for lipid membranes compared with MfVIA. This analogue had increased potency at NaV1.8 and was analgesic in the mouse formalin assay.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-13
    Description: ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-21
    Description: In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-25
    Description: Natural disasters like floods are a worldwide phenomenon and a serious threat to mankind. Flood simulations are applications of disaster control, which are used for the development of appropriate flood protection. Adequate simulations require not only the geometry but also the roughness of the Earth’s surface, as well as the roughness of the objects hereon. Usually, the floodplain roughness is based on land use/land cover maps derived from orthophotos. This study analyses the applicability of roughness map derivation approaches for flood simulations based on different datasets: orthophotos, LiDAR data, official land use data, OpenStreetMap data and CORINE Land Cover data. Object-based image analysis is applied to orthophotos and LiDAR raster data in order to generate land cover maps, which enable a roughness parameterization. The vertical vegetation structure within the LiDAR point cloud is used to derive an additional floodplain roughness map. Further roughness maps are derived from official land use data, OpenStreetMap and CORINE Land Cover datasets. Six different flood simulations are applied based on one elevation data but with the different roughness maps. The results of the hydrodynamic–numerical models include information on flow velocity and water depth from which the additional attribute flood intensity is calculated of. The results based on roughness maps derived from LiDAR data and OpenStreetMap data are comparable, whereas the results of the other datasets differ significantly.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-07
    Description: The possible connectivity between the spatial distribution of water bodies suitable for vectors of malaria and endemic malaria foci in Southern Europe is still not well known. Spain was one of the last countries in Western Europe to be declared free of malaria by the World Health Organization (WHO) in 1964. This study combines, by means of a spatial-temporal analysis, the historical data of patients and deceased with the distribution of water bodies where the disease-transmitting mosquitos proliferate. Therefore, data from historical archives with a Geographic Information System (GIS), using the Inverse Distance Weighted (IDW) interpolation method, was analyzed with the aim of identifying regional differences in the distribution of malaria in Spain. The reasons, why the risk of transmission is concentrated in specific regions, are related to worse socioeconomic conditions (Extremadura), the presence of another vector (Anopheles labranchiae) besides A. atroparvus (Levante) or large areas of water bodies in conditions to reproduce theses vectors (La Mancha and Western Andalusia). In the particular case of Western Andalusia, in 1913, the relatively high percentage of 4.73% of the surface, equal to 202362 ha, corresponds to wetlands and other unhealthy water bodies. These wetlands have been reduced as a result of desiccation policies and climate change such as the Little Ice Age and Global Climate Change. The comprehension of the main factors of these wetland changes in the past can help us interpret accurately the future risk of malaria re-emergence in temperate latitudes, since it reveals the crucial role of unhealthy water bodies on the distribution, endemicity and eradication of malaria in southern Europe.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-14
    Description: Energies, Vol. 11, Pages 645: Sucrose Is a Promising Feedstock for the Synthesis of the Platform Chemical Hydroxymethylfurfural Energies doi: 10.3390/en11030645 Authors: David Steinbach Andrea Kruse Jörg Sauer Philipp Vetter Hydroxymethylfurfural (HMF) has an outstanding position among bio-based platform chemicals, because high-value polymer precursors and fuel additives can be derived from HMF. Unfortunately, the large-scale industrial production of HMF is not yet realized. An open research question is the choice of hexose feedstock material. In this study, we used the highly available disaccharide sucrose for HMF synthesis. The conversion of sucrose was catalyzed by sulfuric acid in water media. Experiments were conducted at temperatures of 180, 200, and 220 °C with reaction times of 2–24 min. A carbon balance showed that the yield of unwanted side products rose strongly with temperature. We also developed a kinetic model for the conversion of sucrose, involving nine first-order reactions, to uncover the kinetics of the main reaction pathways. Within this model, HMF is produced exclusively via the dehydration of fructose. Glucose isomerizes slowly to fructose. Side products arise simultaneously from glucose, fructose, and HMF. A pathway from hexoses to xylose via reverse aldol reaction was also included in the model. We believe that sucrose is the ideal feedstock for large-scale production of HMF because it is more abundant than fructose, and easier to process than sugars obtained from lignocellulosic biomass.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-13
    Description: This study intends to contribute to the ongoing discussion on whether land use and land cover changes (LULC) or climate trends have the major influence on the observed increase of flood magnitudes in the Sahel. A simulation-based approach is used for attributing the observed trends to the postulated drivers. For this purpose, the ecohydrological model SWIM (Soil and Water Integrated Model) with a new, dynamic LULC module was set up for the Sahelian part of the Niger River until Niamey, including the main tributaries Sirba and Goroul. The model was driven with observed, reanalyzed climate and LULC data for the years 1950–2009. In order to quantify the shares of influence, one simulation was carried out with constant land cover as of 1950, and one including LULC. As quantitative measure, the gradients of the simulated trends were compared to the observed trend. The modeling studies showed that for the Sirba River only the simulation which included LULC was able to reproduce the observed trend. The simulation without LULC showed a positive trend for flood magnitudes, but underestimated the trend significantly. For the Goroul River and the local flood of the Niger River at Niamey, the simulations were only partly able to reproduce the observed trend. In conclusion, the new LULC module enabled some first quantitative insights into the relative influence of LULC and climatic changes. For the Sirba catchment, the results imply that LULC and climatic changes contribute in roughly equal shares to the observed increase in flooding. For the other parts of the subcatchment, the results are less clear but show, that climatic changes and LULC are drivers for the flood increase; however their shares cannot be quantified. Based on these modeling results, we argue for a two-pillar adaptation strategy to reduce current and future flood risk: Flood mitigation for reducing LULC-induced flood increase, and flood adaptation for a general reduction of flood vulnerability.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-06-10
    Description: This study aims to assess the potential alterations in the hydrological regime attributed to projected climate change in one of the largest rivers in the Carpathian Area, the Mures River, and to estimate associated threats to riverine ecosystem. The eco-hydrological model, Soil and Water Integrated Model (SWIM), was applied on the Mures River basin, calibrated and validated against records at a gauging station in Alba-Julia town. A set of nine future projections for climatic parameters under one emissions scenario A1B over the period 1971–2100 were fed into the SWIM model. To provide functional link between hydrological regimes and riverine ecosystems, each of the nine simulated discharge time series were introduced into the IHA (Indicators of Hydrological Alterations) tool. Triggered changes in hydrological patterns of the Mures River were assessed at the basin and sub-basin scales. The obtained results present a strong agreement through all nine climate projections; suggesting an increase in the discharge of Mures River for the winter season; a decrease in summer and prolongation of the low flow periods by the end of the century. Anticipated changes would pose threats to aquatic ecosystems; altering normal life-cycles; and depleting natural habitats of species.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-03
    Description: Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg2+ coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg2+ in GTPases. The Mg2+ coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...