GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 17, No. 6 ( 2020-03-13), p. 1868-
    Kurzfassung: The reconstitution of road traffic accidents scenes is a contemporary and important issue, addressed both by private and public entities in different countries around the world. However, the task of collecting data on site is not generally focused on with the same orientation and relevance. Addressing this type of accident scenario requires a balance between two fundamental yet competing concerns: (1) information collecting, which is a thorough and lengthy process and (2) the need to allow traffic to flow again as quickly as possible. This technical note proposes a novel methodology that aims to support road traffic authorities/professionals in activities involving the collection of data/evidences of motor vehicle collision scenarios by exploring the potential of using low-cost, small-sized and light-weight unmanned aerial vehicles (UAV). A high number of experimental tests and evaluations were conducted in various working conditions and in cooperation with the Portuguese law enforcement authorities responsible for investigating road traffic accidents. The tests allowed for concluding that the proposed method gathers all the conditions to be adopted as a near future approach for reconstituting road traffic accidents and proved to be: faster, more rigorous and safer than the current manual methodologies used not only in Portugal but also in many countries worldwide.
    Materialart: Online-Ressource
    ISSN: 1660-4601
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2175195-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2020
    In:  ISPRS International Journal of Geo-Information Vol. 9, No. 4 ( 2020-04-07), p. 225-
    In: ISPRS International Journal of Geo-Information, MDPI AG, Vol. 9, No. 4 ( 2020-04-07), p. 225-
    Kurzfassung: Unmanned aerial vehicles (UAVs) have become popular in recent years and are now used in a wide variety of applications. This is the logical result of certain technological developments that occurred over the last two decades, allowing UAVs to be equipped with different types of sensors that can provide high-resolution data at relatively low prices. However, despite the success and extraordinary results achieved by the use of UAVs, traditional remote sensing platforms such as satellites continue to develop as well. Nowadays, satellites use sophisticated sensors providing data with increasingly improving spatial, temporal and radiometric resolutions. This is the case for the Sentinel-2 observation mission from the Copernicus Programme, which systematically acquires optical imagery at high spatial resolutions, with a revisiting period of five days. It therefore makes sense to think that, in some applications, satellite data may be used instead of UAV data, with all the associated benefits (extended coverage without the need to visit the area). In this study, Sentinel-2 time series data performances were evaluated in comparison with high-resolution UAV-based data, in an area affected by a fire, in 2017. Given the 10-m resolution of Sentinel-2 images, different spatial resolutions of the UAV-based data (0.25, 5 and 10 m) were used and compared to determine their similarities. The achieved results demonstrate the effectiveness of satellite data for post-fire monitoring, even at a local scale, as more cost-effective than UAV data. The Sentinel-2 results present a similar behavior to the UAV-based data for assessing burned areas.
    Materialart: Online-Ressource
    ISSN: 2220-9964
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2655790-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2019
    In:  Remote Sensing Vol. 11, No. 7 ( 2019-04-09), p. 855-
    In: Remote Sensing, MDPI AG, Vol. 11, No. 7 ( 2019-04-09), p. 855-
    Kurzfassung: Unmanned aerial vehicles have become a popular remote sensing platform for agricultural applications, with an emphasis on crop monitoring. Although there are several methods to detect vegetation through aerial imagery, these remain dependent of manual extraction of vegetation parameters. This article presents an automatic method that allows for individual tree detection and multi-temporal analysis, which is crucial in the detection of missing and new trees and monitoring their health conditions over time. The proposed method is based on the computation of vegetation indices (VIs), while using visible (RGB) and near-infrared (NIR) domain combination bands combined with the canopy height model. An overall segmentation accuracy above 95% was reached, even when RGB-based VIs were used. The proposed method is divided in three major steps: (1) segmentation and first clustering; (2) cluster isolation; and (3) feature extraction. This approach was applied to several chestnut plantations and some parameters—such as the number of trees present in a plantation (accuracy above 97%), the canopy coverage (93% to 99% accuracy), the tree height (RMSE of 0.33 m and R2 = 0.86), and the crown diameter (RMSE of 0.44 m and R2 = 0.96)—were automatically extracted. Therefore, by enabling the substitution of time-consuming and costly field campaigns, the proposed method represents a good contribution in managing chestnut plantations in a quicker and more sustainable way.
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2019
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2020
    In:  Remote Sensing Vol. 12, No. 1 ( 2020-01-01), p. 139-
    In: Remote Sensing, MDPI AG, Vol. 12, No. 1 ( 2020-01-01), p. 139-
    Kurzfassung: The use of unmanned aerial vehicles (UAVs) for remote sensing applications in precision viticulture significantly increased in the last years. UAVs’ capability to acquire high spatiotemporal resolution and georeferenced imagery from different sensors make them a powerful tool for a better understanding of vineyard spatial and multitemporal heterogeneity, allowing the estimation of parameters directly impacting plants’ health status. In this way, the decision support process in precision viticulture can be greatly improved. However, despite the proliferation of these innovative technologies in viticulture, most of the published studies rely only on data from a single sensor in order to achieve a specific goal and/or in a single/small period of the vineyard development. In order to address these limitations and fully exploit the advantages offered by the use of UAVs, this study explores the multi-temporal analysis of vineyard plots at a grapevine scale using different imagery sensors. Individual grapevine detection enables the estimation of biophysical and geometrical parameters, as well as missing grapevine plants. A validation procedure was carried out in six vineyard plots focusing on the detected number of grapevines and missing grapevines. A high overall agreement was obtained concerning the number of grapevines present in each row (99.8%), as well as in the individual grapevine identification (mean overall accuracy of 97.5%). Aerial surveys were conducted in two vineyard plots at different growth stages, being acquired for RGB, multispectral and thermal imagery. Moreover, the extracted individual grapevine parameters enabled us to assess the vineyard variability in a given epoch and to monitor its multi-temporal evolution. This type of analysis is critical for precision viticulture, constituting as a tool to significantly support the decision-making process.
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2020
    In:  Remote Sensing Vol. 12, No. 18 ( 2020-09-17), p. 3032-
    In: Remote Sensing, MDPI AG, Vol. 12, No. 18 ( 2020-09-17), p. 3032-
    Kurzfassung: Phytosanitary conditions can hamper the normal development of trees and significantly impact their yield. The phytosanitary condition of chestnut stands is usually evaluated by sampling trees followed by a statistical extrapolation process, making it a challenging task, as it is labor-intensive and requires skill. In this study, a novel methodology that enables multi-temporal analysis of chestnut stands using multispectral imagery acquired from unmanned aerial vehicles is presented. Data were collected in different flight campaigns along with field surveys to identify the phytosanitary issues affecting each tree. A random forest classifier was trained with sections of each tree crown using vegetation indices and spectral bands. These were first categorized into two classes: (i) absence or (ii) presence of phytosanitary issues. Subsequently, the class with phytosanitary issues was used to identify and classify either biotic or abiotic factors. The comparison between the classification results, obtained by the presented methodology, with ground-truth data, allowed us to conclude that phytosanitary problems were detected with an accuracy rate between 86% and 91%. As for determining the specific phytosanitary issue, rates between 80% and 85% were achieved. Higher accuracy rates were attained in the last flight campaigns, the stage when symptoms are more prevalent. The proposed methodology proved to be effective in automatically detecting and classifying phytosanitary issues in chestnut trees throughout the growing season. Moreover, it is also able to identify decline or expansion situations. It may be of help as part of decision support systems that further improve on the efficient and sustainable management practices of chestnut stands.
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2023
    In:  Agriculture Vol. 13, No. 3 ( 2023-03-19), p. 713-
    In: Agriculture, MDPI AG, Vol. 13, No. 3 ( 2023-03-19), p. 713-
    Kurzfassung: Globally, insect pests are the primary reason for reduced crop yield and quality. Although pesticides are commonly used to control and eliminate these pests, they can have adverse effects on the environment, human health, and natural resources. As an alternative, integrated pest management has been devised to enhance insect pest control, decrease the excessive use of pesticides, and enhance the output and quality of crops. With the improvements in artificial intelligence technologies, several applications have emerged in the agricultural context, including automatic detection, monitoring, and identification of insects. The purpose of this article is to outline the leading techniques for the automated detection of insects, highlighting the most successful approaches and methodologies while also drawing attention to the remaining challenges and gaps in this area. The aim is to furnish the reader with an overview of the major developments in this field. This study analysed 92 studies published between 2016 and 2022 on the automatic detection of insects in traps using deep learning techniques. The search was conducted on six electronic databases, and 36 articles met the inclusion criteria. The inclusion criteria were studies that applied deep learning techniques for insect classification, counting, and detection, written in English. The selection process involved analysing the title, keywords, and abstract of each study, resulting in the exclusion of 33 articles. The remaining 36 articles included 12 for the classification task and 24 for the detection task. Two main approaches—standard and adaptable—for insect detection were identified, with various architectures and detectors. The accuracy of the classification was found to be most influenced by dataset size, while detection was significantly affected by the number of classes and dataset size. The study also highlights two challenges and recommendations, namely, dataset characteristics (such as unbalanced classes and incomplete annotation) and methodologies (such as the limitations of algorithms for small objects and the lack of information about small insects). To overcome these challenges, further research is recommended to improve insect pest management practices. This research should focus on addressing the limitations and challenges identified in this article to ensure more effective insect pest management.
    Materialart: Online-Ressource
    ISSN: 2077-0472
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2651678-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2023
    In:  Agriculture Vol. 13, No. 5 ( 2023-04-27), p. 965-
    In: Agriculture, MDPI AG, Vol. 13, No. 5 ( 2023-04-27), p. 965-
    Kurzfassung: In recent years, the use of remote sensing data obtained from satellite or unmanned aerial vehicle (UAV) imagery has grown in popularity for crop classification tasks such as yield prediction, soil classification or crop mapping. The ready availability of information, with improved temporal, radiometric, and spatial resolution, has resulted in the accumulation of vast amounts of data. Meeting the demands of analysing this data requires innovative solutions, and artificial intelligence techniques offer the necessary support. This systematic review aims to evaluate the effectiveness of deep learning techniques for crop classification using remote sensing data from aerial imagery. The reviewed papers focus on a variety of deep learning architectures, including convolutional neural networks (CNNs), long short-term memory networks, transformers, and hybrid CNN-recurrent neural network models, and incorporate techniques such as data augmentation, transfer learning, and multimodal fusion to improve model performance. The review analyses the use of these techniques to boost crop classification accuracy by developing new deep learning architectures or by combining various types of remote sensing data. Additionally, it assesses the impact of factors like spatial and spectral resolution, image annotation, and sample quality on crop classification. Ensembling models or integrating multiple data sources tends to enhance the classification accuracy of deep learning models. Satellite imagery is the most commonly used data source due to its accessibility and typically free availability. The study highlights the requirement for large amounts of training data and the incorporation of non-crop classes to enhance accuracy and provide valuable insights into the current state of deep learning models and datasets for crop classification tasks.
    Materialart: Online-Ressource
    ISSN: 2077-0472
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2651678-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2020
    In:  ISPRS International Journal of Geo-Information Vol. 9, No. 11 ( 2020-11-15), p. 679-
    In: ISPRS International Journal of Geo-Information, MDPI AG, Vol. 9, No. 11 ( 2020-11-15), p. 679-
    Kurzfassung: Currently, the use of free and open-source software is increasing. The flexibility, availability, and maturity of this software could be a key driver to develop useful and interesting solutions. In general, open-source solutions solve specific tasks that can replace commercial solutions, which are often very expensive. This is even more noticeable in areas requiring analysis and manipulation/visualization of a large volume of data. Considering that there is a major gap in the development of web applications for photogrammetric processing, based on open-source technologies that offer quality results, the application presented in this article is intended to explore this niche. Thus, in this article a solution for photogrammetric processing is presented, based on the integration of MicMac, GeoServer, Leaflet, and Potree software. The implemented architecture, focusing on open-source software for data processing and for graphical manipulation, visualization, measuring, and analysis, is presented in detail. To assess the results produced by the proposed web application, a case study is presented, using imagery acquired from an unmanned aerial vehicle in two different areas.
    Materialart: Online-Ressource
    ISSN: 2220-9964
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2655790-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Remote Sensing, MDPI AG, Vol. 12, No. 6 ( 2020-03-24), p. 1046-
    Kurzfassung: Currently, climate change poses a global threat, which may compromise the sustainability of agriculture, forestry and other land surface systems. In a changing world scenario, the economic importance of Remote Sensing (RS) to monitor forests and agricultural resources is imperative to the development of agroforestry systems. Traditional RS technologies encompass satellite and manned aircraft platforms. These platforms are continuously improving in terms of spatial, spectral, and temporal resolutions. The high spatial and temporal resolutions, flexibility and lower operational costs make Unmanned Aerial Vehicles (UAVs) a good alternative to traditional RS platforms. In the management process of forests resources, UAVs are one of the most suitable options to consider, mainly due to: (1) low operational costs and high-intensity data collection; (2) its capacity to host a wide range of sensors that could be adapted to be task-oriented; (3) its ability to plan data acquisition campaigns, avoiding inadequate weather conditions and providing data availability on-demand; and (4) the possibility to be used in real-time operations. This review aims to present the most significant UAV applications in forestry, identifying the appropriate sensors to be used in each situation as well as the data processing techniques commonly implemented.
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Sensors, MDPI AG, Vol. 22, No. 17 ( 2022-08-31), p. 6574-
    Kurzfassung: Hyperspectral aerial imagery is becoming increasingly available due to both technology evolution and a somewhat affordable price tag. However, selecting a proper UAV + hyperspectral sensor combo to use in specific contexts is still challenging and lacks proper documental support. While selecting an UAV is more straightforward as it mostly relates with sensor compatibility, autonomy, reliability and cost, a hyperspectral sensor has much more to be considered. This note provides an assessment of two hyperspectral sensors (push-broom and snapshot) regarding practicality and suitability, within a precision viticulture context. The aim is to provide researchers, agronomists, winegrowers and UAV pilots with dependable data collection protocols and methods, enabling them to achieve faster processing techniques and helping to integrate multiple data sources. Furthermore, both the benefits and drawbacks of using each technology within a precision viticulture context are also highlighted. Hyperspectral sensors, UAVs, flight operations, and the processing methodology for each imaging type’ datasets are presented through a qualitative and quantitative analysis. For this purpose, four vineyards in two countries were selected as case studies. This supports the extrapolation of both advantages and issues related with the two types of hyperspectral sensors used, in different contexts. Sensors’ performance was compared through the evaluation of field operations complexity, processing time and qualitative accuracy of the results, namely the quality of the generated hyperspectral mosaics. The results shown an overall excellent geometrical quality, with no distortions or overlapping faults for both technologies, using the proposed mosaicking process and reconstruction. By resorting to the multi-site assessment, the qualitative and quantitative exchange of information throughout the UAV hyperspectral community is facilitated. In addition, all the major benefits and drawbacks of each hyperspectral sensor regarding its operation and data features are identified. Lastly, the operational complexity in the context of precision agriculture is also presented.
    Materialart: Online-Ressource
    ISSN: 1424-8220
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2052857-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...