GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Minerals, MDPI AG, Vol. 8, No. 11 ( 2018-10-24), p. 479-
    Kurzfassung: The Konos Hill prospect in NE Greece represents a telescoped Mo–Cu–Re–Au porphyry occurrence overprinted by deep-level high-sulfidation mineralization. Porphyry-style mineralization is exposed in the deeper parts of the system and comprises quartz stockwork veins hosted in subvolcanic intrusions of granodioritic composition. Ore minerals include pyrite, molybdenite, chalcopyrite, and rheniite. In the upper part of the system, intense hydrothermal alteration resulted in the formation of a silicified zone and the development of various advanced argillic alteration assemblages, which are spatially related to N–S, NNW–SSE, and E–W trending faults. More distal and downwards, advanced argillic alteration gradually evolves into phyllic assemblages dominated by quartz and sericite. Zunyite, along with various amounts of quartz, alunite, aluminum phosphate–sulfate minerals (APS), diaspore, kaolinite, and minor pyrophyllite, are the main minerals in the advanced argillic alteration. Mineral-chemical analyses reveal significant variance in the SiO2, F, and Cl content of zunyite. Alunite supergroup minerals display a wide compositional range corresponding to members of the alunite, beudantite, and plumbogummite subgroups. Diaspore displays an almost stoichiometric composition. Mineralization in the lithocap consists of pyrite, enargite, tetrahedrite/tennantite, and colusite. Bulk ore analyses of mineralized samples show a relative enrichment in elements such as Se, Mo, and Bi, which supports a genetic link between the studied lithocap and the underlying Konos Hill porphyry-style mineralization. The occurrence of advanced argillic alteration assemblages along the N–S, NNW–SSE, and E–W trending faults suggests that highly acidic hydrothermal fluids were ascending into the lithocap environment. Zunyite, along with diaspore, pyrophyllite, and Sr- and Rare Earth Elements-bearing APS minerals, mark the proximity of the hypogene advanced argillic alteration zone to the porphyry environment.
    Materialart: Online-Ressource
    ISSN: 2075-163X
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2018
    ZDB Id: 2655947-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Minerals, MDPI AG, Vol. 8, No. 8 ( 2018-08-02), p. 331-
    Kurzfassung: Silica sinters forming at the Wairakei geothermal power plant in New Zealand are composed of noncrystalline opal-A that deposited rapidly from cooling geothermal liquids flashed to atmosphere. The sinter is laminated with alternating layers of variably compacted silicified filamentous microbes encased by chains of fused silica microspheres. Microscopic inspection of bonanza quartz vein samples from the Buckskin National low-sulfidation epithermal precious metal deposit in Nevada showed that colloform bands in these veins exhibit relic microsphere textures similar to those observed in the silica sinters from the Wairakei power plant. The textural similarity suggests that the colloform bands were originally composed of noncrystalline opal-A that subsequently recrystallized to quartz. The colloform bands contain dendrites of electrum and naumannite that must have grown in a yielding matrix of silica microspheres deposited at the same time as the ore minerals, implying that the noncrystalline silica exhibited a gel-like behavior. Quartz bands having other textural characteristics in the crustiform veins lack ore minerals. This suggests that ore deposition and the formation of the colloform bands originally composed of compacted microspheres of noncrystalline silica are genetically linked and that ore deposition within the bonanza veins was only episodic. Supersaturation of silica and precious metals leading to the formation of the colloform bands may have occurred in response to transient flashing of the hydrothermal liquids. Flashing of geothermal liquids may thus represent a key mechanism in the formation of bonanza precious metal grades in low-sulfidation epithermal deposits.
    Materialart: Online-Ressource
    ISSN: 2075-163X
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2018
    ZDB Id: 2655947-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2015
    In:  Cells Vol. 4, No. 3 ( 2015-09-21), p. 538-568
    In: Cells, MDPI AG, Vol. 4, No. 3 ( 2015-09-21), p. 538-568
    Materialart: Online-Ressource
    ISSN: 2073-4409
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2015
    ZDB Id: 2661518-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Geosciences, MDPI AG, Vol. 13, No. 7 ( 2023-06-24), p. 192-
    Kurzfassung: Understanding the mineralogy and geochemistry of the subsurface is key when assessing and exploring for mineral deposits. To achieve this goal, rapid acquisition and accurate interpretation of drill core data are essential. Hyperspectral shortwave infrared imaging is a rapid and non-destructive analytical method widely used in the minerals industry to map minerals with diagnostic features in core samples. In this paper, we present an automated method to interpret hyperspectral shortwave infrared data on drill core to decipher major felsic rock-forming minerals using supervised machine learning techniques for processing, masking, and extracting mineralogical and textural information. This study utilizes a co-registered training dataset that integrates hyperspectral data with quantitative scanning electron microscopy data instead of spectrum matching using a spectral library. Our methodology overcomes previous limitations in hyperspectral data interpretation for the full mineralogy (i.e., quartz and feldspar) caused by the need to identify spectral features of minerals; in particular, it detects the presence of minerals that are considered invisible in traditional shortwave infrared hyperspectral analysis.
    Materialart: Online-Ressource
    ISSN: 2076-3263
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2655946-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Minerals, MDPI AG, Vol. 9, No. 12 ( 2019-11-29), p. 740-
    Kurzfassung: High-grade ore zones in low-sulfidation epithermal deposits are commonly associated with the occurrence of banded quartz veins. The ore minerals in these veins are heterogeneously distributed and are mostly confined to ginguro bands, which can be identified in hand specimen based on their distinct dark gray to black color. Micro-X-ray fluorescence element maps obtained on representative samples of banded quartz veins show that Au occurs together with Ag minerals in some of the ginguro bands, but Au can also be present in quartz bands that are light gray to white and cannot be macroscopically distinguished from barren bands. The occurrence of compositionally distinct ginguro and gankin bands, the latter being a new term coined here for colloform quartz bands containing primarily electrum or native gold, can be explained by temporal changes in the composition of the ore-forming thermal waters or variations in the conditions of ore deposition. Textural relationships, including the dendritic shape of ore minerals that appear to have grown in a matrix of silica microspheres, suggest that the ginguro and gankin bands have formed as a result of rapid deposition associated with vigorous boiling or flashing of the thermal waters.
    Materialart: Online-Ressource
    ISSN: 2075-163X
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2019
    ZDB Id: 2655947-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Cancers, MDPI AG, Vol. 14, No. 13 ( 2022-06-24), p. 3111-
    Kurzfassung: Despite recent advances in the treatment of metastatic prostate cancer (PCa), resistance development after taxane treatments is inevitable, necessitating effective options to combat drug resistance. Previous studies indicated antitumoral properties of the natural compound amygdalin. However, whether amygdalin acts on drug-resistant tumor cells remains questionable. An in vitro study was performed to investigate the influence of amygdalin (10 mg/mL) on the growth of a panel of therapy-naïve and docetaxel- or cabazitaxel-resistant PCa cell lines (PC3, DU145, and LNCaP cells). Tumor growth, proliferation, clonal growth, and cell cycle progression were investigated. The cell cycle regulating proteins (phospho)cdk1, (phospho)cdk2, cyclin A, cyclin B, p21, and p27 and the mammalian target of rapamycin (mTOR) pathway proteins (phospho)Akt, (phospho)Raptor, and (phospho)Rictor as well as integrin β1 and the cytoskeletal proteins vimentin, ezrin, talin, and cytokeratin 8/18 were assessed. Furthermore, chemotactic activity and adhesion to extracellular matrix components were analyzed. Amygdalin dose-dependently inhibited tumor growth and reduced tumor clones in all (parental and resistant) PCa cell lines, accompanied by a G0/G1 phase accumulation. Cell cycle regulating proteins were significantly altered by amygdalin. A moderate influence of amygdalin on tumor cell adhesion and chemotaxis was observed as well, paralleled by modifications of cytoskeletal proteins and the integrin β1 expression level. Amygdalin may, therefore, block tumor growth and disseminative characteristics of taxane-resistant PCa cells. Further studies are warranted to determine amygdalin’s value as an antitumor drug.
    Materialart: Online-Ressource
    ISSN: 2072-6694
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2527080-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...