GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2022
    In:  Remote Sensing Vol. 14, No. 14 ( 2022-07-13), p. 3375-
    In: Remote Sensing, MDPI AG, Vol. 14, No. 14 ( 2022-07-13), p. 3375-
    Kurzfassung: The 2020 ‘Elucidating the role of clouds-circulation coupling in climate-Ocean-Atmosphere’ (EUREC4A-OA) and the ‘Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign’ (ATOMIC) campaigns focused on improving our understanding of the interaction between clouds, convection and circulation and their function in our changing climate. The campaign utilized many data collection technologies, some of which are relatively new. In this study, we used saildrone uncrewed surface vehicles, one of the newer cutting edge technologies available for marine data collection, to validate Level 2 and Level 3 Soil Moisture Active Passive (SMAP) satellite and Hybrid Coordinate Ocean Model (HYCOM) sea surface salinity (SSS) products in the Western Tropical Atlantic. The saildrones observed fine-scale salinity variability not present in the lower-spatial resolution satellite and model products. In regions that lacked significant small-scale salinity variability, the satellite and model salinities performed well. However, SMAP Remote Sensing Systems (RSS) 70 km generally outperformed its counterparts outside of areas with submesoscale SSS variation, whereas RSS 40 km performed better within freshening events such as a fresh tongue. HYCOM failed to detect the fresh tongue. These results will allow researchers to make informed decisions regarding the most ideal product and its drawbacks for their applications in this region and aid in the improvement of mesoscale and submesoscale SSS products, which can lead to the refinement of numerical weather prediction (NWP) and climate models.
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 12, No. 11 ( 2020-06-03), p. 1796-
    Kurzfassung: Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean–atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air–sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean–atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean–atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2018
    In:  Remote Sensing Vol. 10, No. 2 ( 2018-02-02), p. 229-
    In: Remote Sensing, MDPI AG, Vol. 10, No. 2 ( 2018-02-02), p. 229-
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2018
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 14, No. 3 ( 2022-02-01), p. 692-
    Kurzfassung: There is high demand for complete satellite SST maps (or L4 SST analyses) of the Arctic regions to monitor the rapid environmental changes occurring at high latitudes. Although there are a plethora of L4 SST products to choose from, satellite-based products evolve constantly with the advent of new satellites and frequent changes in SST algorithms, with the intent of improving absolute accuracies. The constant change of these products, as reflected by the version product, make it necessary to do periodic validations against in situ data. Eight of these L4 products are compared here against saildrone data from two 2019 campaigns in the western Arctic, as part of the MISST project. The accuracy of the different products is estimated using different statistical methods, from standard and robust statistics to Taylor diagrams. Results are also examined in terms of spatial scales of variability using auto- and cross-spectral analysis. The three products with the best performance, at this point and time, are used in a case study of the thermal features of the Yukon–Kuskokwim delta. The statistical analyses show that two L4 SST products had consistently better relative accuracy when compared to the saildrone subsurface temperatures. Those are the NOAA/NCEI DOISST and the RSS MWOI SSTs. In terms of the spectral variance and feature resolution, the UK Met Office OSTIA product appears to outperform all others at reproducing the fine scale features, especially in areas of high spatial variability, such as the Alaska coast. It is known that L4 analyses generate small-scale features that get smoothed out as the SSTs are interpolated onto spatially complete grids. However, when the high-resolution satellite coverage is sparse, which is the case in the Arctic regions, the analyses tend to produce more spurious small-scale features. The analyses here indicate that the high-resolution coverage, attainable with current satellite infrared technology, is too sparse, due to cloud cover to support very high resolution L4 SST products in high latitudinal regions. Only for grid resolutions of ~9–10 km or greater does the smoothing of the gridding process balance out the small-scale noise resulting from the lack of high-resolution infrared data. This scale, incidentally, agrees with the Rossby deformation radius in the Arctic Ocean (~10 km).
    Materialart: Online-Ressource
    ISSN: 2072-4292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2513863-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...