GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (9)
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 10 ( 2023-05-13), p. 8719-
    Abstract: Yin Yang 1 (YY1) is a well-known transcription factor that controls the expression of many genes and plays an important role in the occurrence and development of various cancers. We previously found that the human males absent on the first (MOF)-containing histone acetyltransferase (HAT) complex may be involved in regulating YY1 transcriptional activity; however, the precise interaction between MOF-HAT and YY1, as well as whether the acetylation activity of MOF impacts the function of YY1, has not been reported. Here, we present evidence that the MOF-containing male-specific lethal (MSL) HAT complex regulates YY1 stability and transcriptional activity in an acetylation-dependent manner. First, the MOF/MSL HAT complex was bound to and acetylated YY1, and this acetylation further promoted the ubiquitin–proteasome degradation pathway of YY1. The MOF-mediated degradation of YY1 was mainly related to the 146–270 amino acid residues of YY1. Further research clarified that acetylation-mediated ubiquitin degradation of YY1 mainly occurred through lysine 183. A mutation at the YY1K183 site was sufficient to alter the expression level of p53-mediated downstream target genes, such as CDKN1A (encoding p21), and it also suppressed the transactivation of YY1 on CDC6. Furthermore, a YY1K183R mutant and MOF remarkably antagonized the clone-forming ability of HCT116 and SW480 cells facilitated by YY1, suggesting that the acetylation–ubiquitin mode of YY1 plays an important role in tumor cell proliferation. These data may provide new strategies for the development of therapeutic drugs for tumors with high expression of YY1.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Animals, MDPI AG, Vol. 12, No. 19 ( 2022-09-20), p. 2498-
    Abstract: The nutritional functions of tributyrin (TB) have been extensively studied, but questions remain regarding its influence on the growth of juvenile grass carp (Ctenopharyngodon idellus) and the regulation pathway to PepT1 in the intestine of grass carp. To answer the remaining questions, feeding trials, cell trials, and peritoneal injection trials were conducted in this study. The results showed that an appropriate level of TB (0.5 g/kg and 1.0 g/kg) supplementation in feed significantly promoted the growth performance of juvenile grass carp. The expressions of intestine genes (CDX2, SP1 and PepT1) related to oligopeptide transportation increased in the 0.5 g/kg TB group of feeding trials and both the 5 mM and 10 mM TB groups of the intestine cell trials, respectively. Subsequently, the injection trials of inhibitors CDX2 and SP1 demonstrated that the inhibition of CDX2 or SP1 decreased the mRNA expression of PepT1. Finally, the results of independent or combined treatments of TB and the inhibitors suggested that CDX2/SP1 mediated TB regulation on PepT1. These findings may help us to better understand the functions of TB on growth and PepT1 oligopeptide transportation, which could be modulated by dietary TB through the CDX2/SP1-PepT1 pathway in juvenile grass carp.
    Type of Medium: Online Resource
    ISSN: 2076-2615
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2606558-7
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 15 ( 2023-07-27), p. 12043-
    Abstract: The aim of this study is to investigate the effect of dietary protein levels on flesh quality, oxidative stress, and autophagy status in the muscles of triploid crucian carp (Carassius carassius triploid), and the related molecular mechanisms. Six experimental diets with different protein levels (26%, 29%, 32%, 35%, 38%, 41%) were formulated. A total of 540 fish with an initial weight of 11.79 ± 0.09 g were randomly assigned to 18 cages and six treatments with three replicates of 30 fish each for 8 weeks feeding. It could be found that the whole-body ash content significantly increased in high protein level groups (p 〈 0.05). The 29% dietary protein level group exhibited the highest muscle moisture, although there was an inconspicuous decrease in the chewiness of the muscles when compared with the other groups. The dietary protein level influenced the content of free amino acids and nucleotides, especially the content of flavor amino acids, which exhibited an increasing tendency along with the increasing protein level, such as alanine and glutamic acid, while the flavor nucleotides showed different fluctuation trends. Moreover, the genes related to muscle development were shown to be influenced by the dietary protein level, especially the expression of MRF4, which was up-regulated with the increasing dietary protein levels. The 29% dietary protein level promoted the majority of analyzed muscle genes expression to the highest level when compared to other dietary levels, except the Myostain, whose expression reached its highest at 38% dietary protein levels. Furthermore, the effect of dietary protein levels on antioxidant signaling pathway genes were also examined. High protein levels would boost the expression of GSTα; GPX1 and GPX4α mRNA expression showed the highest level at the 32% dietary protein group. The increasing dietary protein level decreased both mRNA and protein expressions of Nrf2 by up-regulating Keap1. Autophagy-related gene expression levels reached the peak at 32% dietary protein level, as evidenced by a similar change in protein expression of FoxO1. In summary, muscle nutritional composition, antioxidative pathways, and autophagy levels were affected by the dietary protein levels. A total of 29–32% dietary protein level would be the appropriate level range to improve muscle quality and promote the antioxidant and autophagy capacity of triploid crucian carp muscles.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Sensors Vol. 23, No. 4 ( 2023-02-15), p. 2179-
    In: Sensors, MDPI AG, Vol. 23, No. 4 ( 2023-02-15), p. 2179-
    Abstract: The stability of the Great Wall is mainly affected by traffic vibrations and natural hazards, such as strong winds, heavy rainfall, and thunderstorms, which are extremely harmful to the safety of the Great Wall. To determine the impact of the above factors on the Great Wall, a comparative analysis based on MEMS (micro-electro-mechanical system) accelerometer data was conducted between the non-impacts and the impacts of the above factors. An analysis of the relationship between vibration acceleration and each potential hazard based on a visual time series chart was presented using the data of accelerometers, traffic video, meteorology, rainfall, and wind. According to the results, traffic vibration is one of the primary dangerous factors affecting the stability of the Great Wall, Moreover, the intensity of the vibrations increases with the traffic flow. Thunderstorms also influence the stability of the Great Wall, with enhanced thunderstorm excitation resulting in increased vibration displacement. Furthermore, wind load is an influencing factor, with average wind speeds greater than 9 m/s significantly affecting the stability of the Great Wall. Rainfall has no impact on the stability of the Great Wall in the short term. This research can provide important guidance for risk assessment and protection of the Great Wall.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Bioengineering, MDPI AG, Vol. 10, No. 8 ( 2023-08-10), p. 952-
    Abstract: For robot-assisted dental implant surgery, it is necessary to feed the instrument into a specified position to perform surgery. To improve safety and efficiency, a preoperative planning framework, including a finite-parameter surrogate model (FPSM) and an automatic instrument-placement method, is proposed in this paper. This framework is implemented via two-stage optimization. In the first stage, a group of closed curves in polar coordinates is used to represent the oral cavity. By optimizing a finite number of parameters for these curves, the oral structure is simplified to form the FPSM. In the second stage, the FPSM serves as a fast safety estimator with which the target position/orientation of the instrument for the feeding motion is automatically determined through particle swarm optimization (PSO). The optimized feeding target can be used to generate a virtual fixture (VF) to avoid undesired operations and to lower the risk of collision. This proposed framework has the advantages of being safe, fast, and accurate, overcoming the computational burden and insufficient real-time performance of complex 3D models. The framework has been developed and tested, preliminarily verifying its feasibility, efficiency, and effectiveness.
    Type of Medium: Online Resource
    ISSN: 2306-5354
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2746191-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Machines, MDPI AG, Vol. 11, No. 1 ( 2022-12-21), p. 3-
    Abstract: In robot-assisted oral surgery, the surgical tool needs to be fed into the target position to perform surgery. However, unmodeled extraoral and complex intraoral environments bring difficulties to motion planning. Meanwhile, the motion is operated manually by the surgeon, causing relatively limited accuracy as well as the risk of misoperation. Moreover, the random movements of the patient’s head bring additional disturbance to the task. To achieve the task, a motion strategy based on a new conical virtual fixture (VF) was proposed. First, by preoperatively specifying a conical guiding cone as the VF, virtual repulsive forces were applied on the out-of-range end effector. Then, based on the two-point adjustment model and velocity conversion, the effect of VF was established to prevent the end-effector from exceeding the constraint region. Finally, a vision system corrects the guiding cone to compensate for the random movement of the patient’s head to feed to a dynamic target. As an auxiliary framework for surgical operation, the proposed strategy has the advantages of safety, accuracy, and dynamic adaptability. Both simulations and experiments are conducted, verifying the feasibility of the proposed strategy.
    Type of Medium: Online Resource
    ISSN: 2075-1702
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704328-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Remote Sensing Vol. 15, No. 4 ( 2023-02-20), p. 1166-
    In: Remote Sensing, MDPI AG, Vol. 15, No. 4 ( 2023-02-20), p. 1166-
    Abstract: Dynamic response monitoring is of great significance for large engineering structural anomaly diagnosis and early warning. Although the global navigation satellite system (GNSS) has been widely used to measure the dynamic structural response, it has the limitation of a relatively low sampling rate. The micro-electro-mechanical system (MEMS) accelerometer has a high sampling frequency, but it belongs to the approaches of acceleration measurements as the absolute position is unavailable. Hence, in this paper, an integrated vibration monitoring system that includes a GNSS receiver and 3-axis MEMS accelerometers was developed to obtain the dynamic responses under the thunder loading. First, a new denoising algorithm for thunderstorm-induced vibration data was proposed based on variational mode decomposition (VMD) and the characteristics of white noise, and the low-frequency disturbance was separated from the GNSS displacement time series. Then, a power spectral density (PSD) analysis using data collected by the integrated system was carried out to extract low/high natural frequencies. Finally, field monitoring data collected at Huanghuacheng, Hefangkou, and Qilianguan in Beijing’s Huairou District were used to validate the effectiveness of the integrated system and processing scheme. According to the results, the proposed integrated GNSS/MEMS accelerometer system can not only be used to detect thunder loading events, but also completely extract the natural frequency based on PSD analysis. The high natural frequencies detected from the accelerometer data of the four Great Wall monitoring stations excited by the thunderstorms are 42.12 Hz, 12.94 Hz, 12.58 Hz, and 5.95 Hz, respectively, while the low natural frequencies detected from the GNSS are 0.02 Hz, 0.019 Hz, 0.016 Hz, and 0.014 Hz, respectively. Moreover, thunderstorms can cause the Great Wall to vibrate with a maximum displacement of 14.3 cm.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Agronomy, MDPI AG, Vol. 12, No. 12 ( 2022-11-25), p. 2962-
    Abstract: Cotton has a high salt tolerance. However, due to the high salt content and low K+/Na+ ratio in saline soils, cotton yield and fiber quality are difficult to improve. To investigate the effects of potassium (K) on cotton fiber length under salt stress, a two-year bucket-based field experiment was conducted using two different cultivars (CCRI 79, salt tolerant, and Simian 3, salt sensitive). Three K rates (K0, 0 kg K2O ha−1; K150, 150 kg K2O ha−1; and K300, 300 kg K2O ha−1) were applied at low, middle, and high soil electrical conductivities (S1, 1.7–1.8 dS m−1; S2, 6.4–6.9 dS m−1; and S3, 10.6–11.8 dS m−1) to investigate the absorption, transport, and distribution characteristics of K+ and Na+ in the boll-leaf system (including the leaf subtending the cotton boll (LSCB), fruiting branch, boll shell, and fiber) of both cotton cultivars, as well as the relationship with fiber length. The results showed that K application (K150 and K300) significantly increased the cotton fiber length under salt stress, with the largest fiber length alleviation coefficients (AC) in the middle fruiting branches. The AC decreased with an increase in salt stress and was greater in CCRI 79 than in Simian 3. The K150 treatment (soil K+/Na+ = 1/13) completely mitigated the reduction in fiber length caused by S2 salt stress in CCRI 79, whereas the K300 treatment (soil K+/Na+ = 1/10) completely eased the reduction in fiber length caused by S2 salt stress in Simian 3. An application of K under salt stress increased the K+ content and K+/Na+ ratio in the soil and the organs of the boll-leaf system, regulated the K+/Na+ homeostasis in the boll-leaf system, enhanced the K+-selective transport coefficient (SK-Na) in the LSCB, maintained a high K+/Na+ ratio in the fiber, and mitigated the fiber length reduction. In conclusion, the fiber length reduction in salt-tolerant cultivars was completely mitigated by K150 (i.e., soil K+/Na+ = 1/13) under moderate salt stress; however, it was not completely mitigated by K application under high salt stress.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 4 ( 2020-02-15), p. 1316-
    Abstract: Serum amyloid A (SAA) promotes endothelial inflammation and dysfunction that is associated with cardiovascular disease and renal pathologies. SAA is an apoprotein for high-density lipoprotein (HDL) and its sequestration to HDL diminishes SAA bioactivity. Herein we investigated the effect of co-supplementing HDL on SAA-mediated changes to vascular and renal function in apolipoprotein E-deficient (ApoE−/−) mice in the absence of a high-fat diet. Male ApoE−/− mice received recombinant human SAA or vehicle (control) by intraperitoneal (i.p.) injection every three days for two weeks with or without freshly isolated human HDL supplemented by intravenous (i.v.) injection in the two weeks preceding SAA stimulation. Aorta and kidney were harvested 4 or 18 weeks after commencement of treatment. At 4 weeks after commencement of treatment, SAA increased aortic vascular cell adhesion molecule (VCAM)-1 expression and F2-isoprostane level and decreased cyclic guanosine monophosphate (cGMP), consistent with SAA stimulating endothelial dysfunction and promoting atherosclerosis. SAA also stimulated renal injury and inflammation that manifested as increased urinary protein, kidney injury molecule (KIM)-1, and renal tissue cytokine/chemokine levels as well as increased protein tyrosine chlorination and P38 MAPkinase activation and decreased in Bowman’s space, confirming that SAA elicited a pro-inflammatory phenotype in the kidney. At 18 weeks, vascular lesions increased significantly in the cohort of ApoE−/− mice treated with SAA alone. By contrast, pretreatment of mice with HDL decreased SAA pro-inflammatory activity, inhibited SAA enhancement of aortic lesion size and renal function, and prevented changes to glomerular Bowman’s space. Taken together, these data indicate that supplemented HDL reduces SAA-mediated endothelial and renal dysfunction in an atherosclerosis-prone mouse model.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...